• Title/Summary/Keyword: Single gene disorder

Search Result 47, Processing Time 0.035 seconds

Neurofibromatosis type 1: a single center's experience in Korea

  • Kim, Min Jeong;Cheon, Chong Kun
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.9
    • /
    • pp.410-415
    • /
    • 2014
  • Purpose: Neurofibromatosis 1 (NF1) is an autosomal dominant condition caused by an NF1 gene mutation. NF1 is also a multisystem disorder that primarily affects the skin and nervous system. The goal of this study was to delineate the phenotypic characterization and assess the NF1 mutational spectrum in patients with NF1. Methods: A total of 42 patients, 14 females and 28 males, were enrolled in this study. Clinical manifestations and results of the genetic study were retrospectively reviewed. Results: Age of the patients at the time of NF1 diagnosis was $15.8{\pm}14.6$ years (range, 1-62 years). Twelve patients (28.6%) had a family history of NF1. Among the 42 patients, $Caf\acute{e}$-au-lait spots were shown in 42 (100%), neurofibroma in 31 (73.8%), freckling in 22 (52.4%), and Lisch nodules in seven (16.7%). The most common abnormal finding in the brain was hamartoma (20%). Mental retardation was observed in five patients (11.9%), seizures in one patient (2.4%), and plexiform neurofibromas (PNFs) in four patients (9.5%). One patient with PNFs died due to a malignant peripheral nerve sheath tumor in the chest cavity. Genetic analysis of seven patients identified six single base substitutions (three missense and three nonsense) and one small deletion. Among these mutations, five (71.4%) were novel (two missense mutations: p.Leu1773Pro, p.His1170Leu; two nonsense mutations: $p.Arg2517^*$, $p.Cys2371^*$; one small deletion: $p.Leu1944Phefs^*6$). Conclusion: The clinical characteristics of 42 Korean patients with NF1 were extremely variable and the mutations of the NF1 gene were genetically heterogeneous with a high mutation-detection rate.

Association Study between Serotonin 1A Receptor Gene rs6295 Polymorphism and Tardive Dyskinesia in Patients with Schizophrenia (조현병 환자에서의 지연성 운동이상 발생과 세로토닌 1A 수용체유전자 rs6295 다형성과의 연관성)

  • Lee, Youn-Jung;Namgoong, Yoon;Cho, Areum;Lee, Heon-Jeong
    • Korean Journal of Schizophrenia Research
    • /
    • v.23 no.2
    • /
    • pp.71-77
    • /
    • 2020
  • Objectives: Tardive dyskinesia (TD) is a movement disorder that is characterized by hyperkinetic movements. Previous studies have suggested that the serotonergic systems are correlated with TD vulnerability. In this study, the association between a single-nucleotide polymorphism (SNP) of the serotonin 1A receptor gene (HTR1A) rs6295 and TD was investigated. Methods: We investigated whether HTR1A rs6295 SNP is associated with antipsychotic-induced TD in 280 Korean patients with schizophrenia. Patients with schizophrenia having TD (n=105) and those without TD (n=175) were matched for their antipsychotic exposures and other relevant variables. The HTR1A rs6295 SNP was analyzed using polymerase chain reaction (PCR)-based methods. Results: There was no significant difference in the distribution of genotypic (χ2=2.70, p=0.26) and allelic (χ2=1.87, p=0.17) frequencies between the patient groups with TD and without TD. There was no significant difference in total abnormal involuntary movement scale score (F=0.39, p=0.68) among the genotype group either. Conclusion: Although there were no differences in genotypic and allelic frequency between patient groups with and without TD, further studies on association of TD with other SNPs of HTRA1 are needed to understand the pathophysiological mechanism of TD.

Prenatal diagnosis of the spinal muscular atrophy type I using genetic information from archival slides and paraffin-embedded tissues

  • Choi, Soo-Kyung;Cho, Eun-Hee;Kim, Jin-Woo;Park, So-Yeon;Kim, Young-Mi;Ryu, Hyun-Mee;Kang, Inn-Soo;Jun, Jung-Young;Chi, Je-G.
    • Journal of Genetic Medicine
    • /
    • v.2 no.2
    • /
    • pp.53-57
    • /
    • 1998
  • Spinal muscular atrophy (SMA) type I is a common severe autosomal recessive inherited neuromuscular disorder that has been mapped to chromosome 5q11.2-13.3. The survival motor neuron (SMN) gene, a candidate gene, is known to be deleted in 96% of patients with SMA type I. Presently, PCR and single strand conformation polymorphism (PCR-SSCP) analyses have been made possible for application to both archival slides and paraffin-embedded tissues. Archival materials represent valuable DNA resources for genetic diagnosis. We applied these methods for the identification of SMN gene of SMA type I in archival specimens for the prenatal diagnosis. In this study, we performed the prenatal diagnosis with chorionic villus sampling (CVS) cells on two women who had experienced neonatal death of SMA type I. DNA extraction was done from archival slide and tissue materials and PEP-PCR was performed using CVS cells. In order to identify common deletion region of SMN and neuronal apoptosis-inhibitory protein (NAIP) genes, cold PCR-SSCP and PCR-restriction site assay were carried out. Case 1 had deletions of the exons 7 and 8, and case 2 had exon 7 only on the telomeric SMN gene. Both cases were found to be normal on NAIP gene. These results were the same for both CVS and archival biopsied specimens. In both cases, the fetuses were, therefore, predicted to be at very high risk of being affected and the pregnancy were terminated. These data clearly demonstrate that archival slide and paraffin-embedded tissues can be a valuable source of DNA when the prenatal genetic diagnosis is needed in case any source for genetic analysis is not readily available due to previous death of the fetus or neonate.

  • PDF

Association of the RORA Gene Polymorphism and Seasonal Variations in Mood and Behavior (RORA 유전자 다형성과 기분 및 행동의 계절성 변동의 연관성)

  • Kim, Hae-In;So, Soo-Jung;Yang, Hee Jung;Song, Hyun Mi;Moon, Joung Ho;Yoon, Ho-Kyoung;Kang, Seung-Gul;Park, Young-Min;Lee, Seung-Hwan;Kim, Leen;Lee, Heon-Jeong
    • Sleep Medicine and Psychophysiology
    • /
    • v.20 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Objectives: Several evidence has been suggested that the circadian gene variants contribute to the pathogenesis of seasonal affective disorder. In this study, we aimed to investigate the polymorphism in RORA (Retinoid-related orphan receptor A) gene in relation to seasonal variations among healthy young adults in Seoul, Korea. Methods: A total of 507 young healthy adult subjects were recruited by advertisement. Seasonal variations were assessed by the Seasonality Pattern Assessment Questionnaire (SPAQ). Single-nucleotide polymorphism in the RORA rs11071547 gene was genotyped by PCR in 507 individuals. Considering summer type as confounding factor, we conducted analysis 478 subjects except 29 subjects of summer type. The Chi-square test was conducted to compare differences between groups of seasonals and non-seasonals. Association between genotypes and Global Seasonality Score (GSS) were tested using ANCOVA (Analysis of covariance). Results: In this sample, the prevalence of SAD was 12.1% (winter type 9.3%, summer type 2.8%). There is no significant difference in genotyping distribution of RORA rs11071547 between groups of seasonals and non-seasonals. Global seasonality score (GSS) and scores of all subscales except body weight and appetite were not significantly different between the group with C allele homozygote and the group with T allele homozygote and heterozygote (p-value 0.138). Scores of body weight and appetite were significantly higher in group with C allele homozygotes. Conclusion: These results suggest that RORA gene polymorphism play a role in seasonal variations in appetite and body weight and is associated with susceptibility to seasonal affective disorder in some degree in the population studied.

Polymorphisms in Glutamate Receptor, Ionotropic, N-methyl-D-aspartate 2B(GRIN2B) Genes of Autism Spectrum Disorders in Korean Population : Family-based Association Study (한국인 자폐스펙트럼장애에서 Glutamate Receptor, Ionotropic, N-methyl-D-Aspartate 2B(GRIN2B) 유전자 다형성-가족기반연구)

  • Yoo, Hee Jeong;Cho, In Hee;Park, Mira;Yoo, Hanik K.;Kim, Jin Hee;Kim, Soon Ae
    • Korean Journal of Biological Psychiatry
    • /
    • v.13 no.4
    • /
    • pp.289-298
    • /
    • 2006
  • Objectives : Autism is a complex neurodevelopmental spectrum disorder with a strong genetic component. Previous neurochemical and genetic studies suggested the possible involvement of glutamate N-methyl-D-aspartate(NMDA) receptor in autism. The aim of study was to investigate the association between the NMDA2B receptor gene(GRIN2B) and autism spectrum disorders(ASD) in the Korean population. Methods : The patients with ASD were diagnosed with Autism Diagnostic Interview-Revised and Autism Diagnostic Observation Schedule based on DSM-IV diagnostic classification. The present study was conducted with the detection of four single nucleotide polymorphisms(SNPs) in GRIK2 and family-based association analysis of the single nucleotide polymorphisms in Korean ASD trios using transmission disequilibrium test (TDT). Results : One hundred twenty six patients with ASD and their biological parents were analyzed. 86.5% were male and 85.1% were diagnosed as autistic disorder. The mean age was $71.9{\pm}31.6$ months(range : 26-185 months). We found that rs1805247 showed significantly preferential transmission(TDT ${\chi}^2$=12.8, p<0.001) in ASD. Conclusion : One SNP in GRIN2B gene was significantly associated with ASD in the Korean population. This result suggests the possible involvement of glutamate NMDA receptor gene in the development of ASD.

  • PDF

Analysis of Vasopressin Receptor Type 2(AVPR2) Gene in a Pedigree with Congenital Nehrogenic Diabetes Insipidus : Identification of a Family with R202C Mutation in AVPR2 Gene (신성요붕증 가계에서 바소프레신 V2 수용체(AVPR2) 유전자 분석 : AVPR2 유전자 R202C 돌연변이의 발견)

  • Park June-Dong;Kim Ho-Sung;Kim Hee-Joo;Lee Yoon-Kyung;Kwak Young-Ho;Ha Il-Soo;Cheong Hae-Il;Choi Yong;Park Hye-Won
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.209-216
    • /
    • 1999
  • Purpose : Nephrogenic diabetes insipidus (NDI) is a rare X-linked disorder associated with renal tubule resistance to arginine vasopressin (AVP). The hypothesis that the defect underlying NDI might be a dysfunctional renal AVPR2 has recently been proven by the identification of mutations in the AVPR2 gene in NDT patients. To investigate the association of mutations in th AVPR2 gene with NDI, we analyzed the AVPR2 gene located on the X chromosome. Methods : We have analyzed the AVPR2 gene in a kindred with X-linked NDI. The proband and proband's mother were analyzed by polymerase chain reaction-single strand conformational polymorphism(PCR-SSCP) and DNA sequencing of the AVPR2 gene. We also have used restriction enzyme analysis of genomic PCR product to evaluate the AVPR2 gene. Results : C to T transition at codon 202, predictive of an exchange of tryptophan 202 by cysteine(R202C) in the third extracellular domain was identified. This mutation causes a loss of Hae III site within the gene. Conclusion : We found a R202C missense mutation in the AVPR2 gene causing X-linked NDI, and now direct mutational analysis is available for carrier screening and early diagnosis.

  • PDF

Investigation of IL-1B (-511, +3954) and IL-1RN Gene Polymorphisms in Korean Psoriasis Patients (한국인 건선 환자에서의 IL-1B (-511, +3954)와 IL-1RN 유전자의 다양성 조사)

  • Kim, Yang-Kyum;Pyo, Chul-Woo;Kim, Tae-Yoon;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.242-247
    • /
    • 2003
  • Background: Psoriasis is an inflammatory skin disorder that is characterized by a marked proliferation of keratinocytes, vascular dilation and leukocyte infiltration. Cytokines play important roles in the pathogenesis of inflammatory disorders. An overexpression of proinflammatory cytokines was characterized in psoriasis plaque. Among these cytokines, IL-$1{\beta}$ is major pro-inflammatory cytokine synthesized during the infection and inflammatory process. The IL-1 receptor antagonist (IL-1Ra) competes for the same IL-1 receptor for $IL-1{\alpha}$ and $-1{\beta}$, which prevents activation of the target cells. Three single nucleotide polymorphisms (SNPs) in the IL-$1{\beta}$ gene have been reported at position -31, -511 and +3954. Within the IL-1Ra gene (IL-1RN), there is a variable number of tandem repeats (VNTR) of an 86 bp length in intron 2. These polymorphisms related to cytokine production and associated with various diseases. Methods: We investigated the polymorphisms of IL-1B (promoter -511 and +3954) and IL-1RN on 114 psoriasis patients and 311 healthy normal controls in Korean. We performed PCR-RFLP on single nucleotide polymorphisms (SNPs) of IL-1B (promoter -511 and +3954) and fragment analysis on IL-1RN 86 bp VNTR polymorphism. Results: The frequency of IL-1B $-511^*1$ allele (patients vs. controls; 50.0% vs. 42.3%, RR=1.4) was significantly increased and IL-1B $-511^*2$ allele (patients vs. controls; 50.0% vs. 57.7%, RR=0.7) decreased in psoriasis patients compared to normal controls. We also analyzed the IL-1B -511 polymorphism according to patients' characters (age of onset, sex and family history). The IL-1B -511 alleles were significantly associated in patients with male and family history than health normal controls. There were no significant associations of IL-1B +3954 and IL-1RN polymorphisms with psoriasis patients. Conclusion: These results suggest that the polymorphism of IL-1B -511 could be genetic susceptibility to psoriasis in Koreans.

GENETIC CONTROL MECHANISM AND MOLECULAR BASIS OF NEURODEVELOPMENT (유전인자 조절기전과 신경발달의 분자 생물학적 특성)

  • Joung, Yoo-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.16 no.1
    • /
    • pp.5-14
    • /
    • 2005
  • There has been an enormous progress in understanding of how genes contribute to both normal and abnormal development. Also many laboratory works are exploring the intricacies of how to develop in the human central nervous system. Understanding the mechanisms of cortical development gives essential insight into the pathogenesis of many genetic and acqured developmental psychiatric disorders, including autism, schizophrenia, and teaming disorder. Genes have been implicated in an ever-increasing number of disorders. Advance in genetics have begun to clarify the molecular basis of not only single-gene disorders, but also more complex phenotypes.

  • PDF

Korean Children with Infantile Pompe Disease Presenting with Hypertrophic Cardiomyopathy: Experiences in a Single Institution (단일 기관에서 경험한 비후성 심근병증으로 발현된 영아형 폼페병)

  • Ko, Jung Min;Lee, Young Ah;Kim, Gi Beom;Park, Sung Sup;Song, Jung-Han
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.1
    • /
    • pp.42-48
    • /
    • 2012
  • Pompe disease is a rare lysosomal glycogen storage disorder caused by a total or partial deficiency of the acid ${\alpha}$-glucosidase (GAA) enzyme due to the GAA gene mutations. The classic infantile form of Pompe disease is a rapidly progressive multi-organ disease with hypotonia, generalized muscle weakness, and hypertrophic cardiomyopathy, usually leading to death in the first 2 years of life. Enzyme replacement therapy with recombinant human GAA has been shown to be effective and subsequently yielded promising results. Here, we present clinical and genetic characteristics of three Korean non-classic infantile Pompe patients, and the short term efficacy of enzyme replacement therapy. Considering that enzyme replacement therapy can change the natural course of infantile Pompe disease, early diagnosis and early initiation of treatment is critical to improving patient outcomes.

  • PDF

Optogenetics: a New Frontier for Cell Physiology Study (광유전학: 세포 생리 연구를 위한 새로운 frontier)

  • Byun, Jonghoe
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.953-959
    • /
    • 2015
  • Optogenetics is the combination of optical and molecular strategies to control designated molecular and cellular activities in living tissues and cells using genetically encoded light-sensitive proteins. It involves the use of light to rapidly gate the membrane channels that allows for ion movement. Optogenetics began with the placing of light-sensitive proteins from green algae inside specific types of brain cells. The cells can then be turned on or off with pulses of blue and yellow light. Using the naturally occurring algal protein Channelrhodopsin-2 (ChR2), a rapidly gated light-sensitive cation channel, the number and frequency of action potentials can be controlled. The ChR2 provides a way to manipulate a single type of neuron while affecting no others, an unprecedented specificity. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers. An improbable combination of green algae, lasers, gene therapy and fiber optics made it possible to map neural circuits deep inside the brain with a precision that has never been possible before. This will help identify the causes of disorders like depression, anxiety, schizophrenia, addiction, sleep disorder, and autism. Optogenetics could improve upon existing implanted devices that are used to treat Parkinson’s disease, obsessive-compulsive disorder and other ailments with pulses of electricity. An optogenetics device could hit more specific subsets of brain cells than those devices can. Applications of optogenetic tools in nonneuronal cells are on the rise.