• Title/Summary/Keyword: Single gene

Search Result 2,008, Processing Time 0.04 seconds

RECK Gene Promoter rs10814325 Polymorphism in Egyptian Patients with Hepatocellular Carcinoma on Top of Chronic Hepatitis C Viral Infection

  • Fakhry, Amal Bahgat;Ahmed, Asmaa Ismail;AbdelAlim, Mahmoud Abdo;Ramadan, Dalia Ibrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2383-2388
    • /
    • 2016
  • Background: The reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) gene is a novel transformation suppressor gene linked to several malignancies. Objective: To analyze any association between RECK gene rs10814325 single-nucleotide polymorphism (SNP) and HCC susceptibility with various clinicopathological and laboratory data. Materials and Methods: RECK gene rs10814325 SNP was estimated, using real-time PCR, in 30 HCC patients on top of HCV infection, 30 HCV related cirrhotic patients and 30 healthy controls. Results: No special pattern of association could be detected on comparing the RECK gene rs10814325 genotypes(P=0.5), or alleles(P=0.49) among the studied groups. HCC patients with TT genotype had younger age (mean of $54.1{\pm}6.0$ years vs $60.6{\pm}10.2$ years for TC/CC genotypes, P=0.035). Abdominal distension was significantly greater in TT genotype patients (75% vs 30%for TC/CC genotypes, P=0.045). The TT genotype was present in 75% of patients with lymph node metastasis. Serum GGT levels were higher in TT genotype patients [80 (48.5-134.8) IU/L vs 40 (33-87.5) IU/L for TC/CCgenotypes], and lower limb edema was observed in 60% for TT vs 20% for TC/CCgenotypes, but both just failed to reach significance (p=0.05 and p=0.06 respectively). Conclusions: RECK gene rs10814325 T>C could not be considered a risk factor for HCC development on top of HCV, but may be related to the disease progression and metastasis.

Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals (환경 오염물질의 진보된 독성 평가 기법)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers

  • Nguyen, Thi Lan Anh;Kunhareang, Sajee;Duangjinda, Monchai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1686-1695
    • /
    • 2015
  • Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in $PS{\times}KM$ chickens. For $PS{\times}KT$ populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers.

Copper, Zinc-Superoxide Dismutase (Cu/Zn SOD) Gene During Embryogenesis of Bombyx mori: Molecular Cloning, Characterization and Expression

  • Hong, Sun-Mee;Kang, Seok-Woo;Goo, Tae-Won;Kim, Nam-Soon;Lee, Jin-Sung;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • BmCu/Zn SOD was isolated from early embryo of Bombyx mori using microarray analysis. The BmCu/Zn SOD gene was observed during the early embryonic stage with the strongest signal found at the unfertilizaion, fertilization and blastoderm stages. The BmCu/Zn SOD gene encodes a protein of 154 amino acids with a calculated Mr of 15 kDa. The deduced amino acid sequence of BmCu/Zn SOD indicated that the residues that form on the Cu/Zn binding site are conserved and that the sequence is a 60% identity to that of M. domestica. In a phylogenetic tree, Bm SOD was also close to Drosophila SODs rather than other insect SODs. The BmCu/Zn SOD gene exists as a single copy in the genome. Transcripts of BmCu/Zn SOD cDNA were identified by northern blot analysis. The expression of the BmCu/Zn SOD gene was observed weakly in most of larvae, pre-pupae, pupae and adult tissues. Also, the BmCu/Zn SOD gene was observed in early embryonic stage. Although the roles of SODs remains to be further elucidated, the high expression of BmCu/Zn SOD gene at before 24 h post fertilization suggests that this gene is of general importance during early embryogenesis in the Bombyx mod.

Investigation of KIT Gene Polymorphisms in Korean Cattle

  • Hoque, Md. Rashedul;Lee, Seung-Hwan;Lim, Da-Jeong;Cho, In-Cheol;Choi, Nu-Ri;Seo, Dong-Won;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.411-418
    • /
    • 2012
  • KIT gene is the major causative gene for coat color variation in diverse animal species. This gene regulates melanocyte migration from the neural crest to target tissues and the mutation of this gene can affect dominant white phenotypes in animals. Because this gene has a major influence for the coat color variation, single nucleotide polymorphisms (SNPs) in 14 Korean cattle (Hanwoo) and 5 Holstein individuals were investigated. The Hanwoo DNA samples included three different colored (5 Black, 5 Yellow and 4 Stripe) animals. Total 126 polymorphisms have been identified and 23 of them are located in the exon region. Also, 5 bp (TTCTC) and 3 bp (TCT) intronic indels in intron 3 and intron 5, respectively, were identified. Out of 23 exonic polymorphisms, 15 SNPs are the missense mutations and the rest of the SNPs are silence mutations. The neighbor-joining phylogenetic tree was constructed for the different colored animals using the obtained KIT gene sequences. Holstein breed showed a clear breed-specific cluster in the phylogenetic tree which is differed from Hanwoo. Also, three colored Hanwoo animals were not discriminated among the breeds. The KIT gene polymorphisms identified in this study will possibly give some solutions for the color variations in cattle with further verifications.

Cloning and Characterization of a PI-like MADS-Box Gene in Phalaenopsis Orchid

  • Guo, Bin;Hexige, Saiyin;Zhang, Tian;Pittman, Jon K.;Chen, Donghong;Ming, Feng
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.845-852
    • /
    • 2007
  • The highly evolved flowers of orchids have colorful sepals and fused columns that offer an opportunity to discover new genes involved in floral development in monocotyledon species. In this investigation, we cloned and characterized the homologous PISTALLATA-like (PI-like) gene PhPI15 ($\underline{Ph}alaenopsis$ $\underline{PI}$ STILLATA # $\underline{15}$), from the Phalaenopsis hybrid cultivar. The protein sequence encoded by PhPI15 contains a typical PI-motif. Its sequence also formed a subclade with other monocot PI-type genes in phylogenetic analysis. Southern analysis showed that PhPI15 was present in the Phalaenopsis orchid genome as a single copy. Furthermore, it was expressed in all the whorls of the Phalaenopsis flower, while no expression was detected in vegetative organs. The flowers of transgenic tobacco plants ectopically expressing PhPI15 showed male-sterile phenotypes. Thus, as a Class-B MADS-box gene, PhPI15 specifies floral organ identity in orchids.

OsDOR1, a novel glycine rich protein that regulates rice seed dormancy

  • Kim, Suyeon;Huh, Sun Mi;Han, Hay Ju;Cho, Mi Hyun;Lee, Gang Sub;Kim, Beom Gi;Kwon, Taek Yun;Yoon, In Sun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.90-90
    • /
    • 2017
  • Regulation of seed dormancy is important in many grains to prevent pre-harvest sprouting. To identify and understand the gene related to seed dormancy regulation, we have screened for viviparous phenotypes of rice mutant lines generated by insertion of Ds transposon in a Korean Japonica cultivar (Dongjin) background. One of the mutants, which represented viviparous phenotype, was selected for further seed dormancy regulation studies and designated dor1. The dor1 mutant has single Ds insertion in the second exon of OsDor1 gene encoding glycine-rich protein. The seeds of dor1 mutant showed a higher germination potential and reduced abscisic acid (ABA) sensitivity compared to wild type Dongjin. Over-expression of Dor1 complements the viviparous phenotype of dor1 mutant, indicating that Dor1 function in seed dormancy regulation. Subcellular localization assay of Dor1-GFP fusion protein revealed that the OsDor1 protein mainly localized to membrane and the localization of OsDOR1 was influenced by presence of a giberelin (GA) receptor OsGID1. Further bimolecular fluorescence complementation (BiFC) analysis indicated that OsDOR1 interact with OsGID1. The combined results suggested that OsDOR1 regulates seed dormancy by interacting with OsGID1 in GA response. Additionally, expression of OsDOR1 partially complemented the cold sensitivity of Escherichia coli BX04 mutant lacking four cold shock proteins, indicating that OsDOR1 possessed RNA chaperone activity.

  • PDF

Identification of rice blast major resistance genes in Korean rice varieties using molecular marker

  • Kim, Yangseon;Goh, Jaeduk;Kang, Injeong;Shim, Hyeongkwon;Heu, Sunggi;Roh, Jaehwan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.112-112
    • /
    • 2017
  • Rice blast caused by Magnaporthe oryzae is one of the most serious diseases that affect the quantity and quality of rice production. The use of resistant rice varieties would be the most effective way to control the rice blast. However R gene incorporation into the rice variety takes time and pathogen could overcome the R gene effects after for a while. For monitoring the rice blast resistance gene distribution in Korean varieties, the four major blast resistance genes against M. oryzae were screened in a number of Korean rice varieties using molecular markers. Of the 120 rice varieties tested, 40 were found to contain the Pi-5 gene, 25 for the Pi-9 gene, 79 for Pi-b and 40 for the Pi-ta gene. None of these rice varieties includes tested 4 R genes. 3 R genes combination, Pi-5/Pi-9/Pi-b, Pi-5, Pi-9.Pi-ta, or Pi-9/Pi-b/Pi-ta were found in 12 varieties, the rice blast disease severity were showed as resistant in the rice verities containing Pi-9/Pi-b/Pi-ta R genes combination, respectively. Also pathogenic diversity of M. oryzae isolates collected in the rice field from 2004 to 2015 in rice field in Korea were analyzed using rice blast monogenic lines, each harboring a single blast resistance gene. Compatibility of blast isolates against rice blast monogenic lines carrying the resistance genes Pi5, Pi9, Pib, and Piz showed dynamic changes by year. It indicates that pathogen has high evolutionary potential adapted host resistances to increase fitness and would lead to rice blast resistance bred into the cultivar becoming ineffective eventually.

  • PDF

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

Molecular Cloning of ATPase $\alpha$-Subunit Gene from Mitochondria of Korean Ginseng (Panu ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A. Meyer) ATPase $\alpha$-subunit 유전자의 Cloning)

  • Park, Ui-Sun;Choi, Kwan-Sam;Kim, Kab-Sig;Kim, Nam-Won;Choi, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.56-61
    • /
    • 1995
  • Molecular cloning and restriction mapping on ATPase $\alpha$-subunit gene (atpA) were carried out to obtain genomic information concerned with the gene structure and organization in Korean ginseng mitochondria. Two different clones containing the homologous sequence of atpA gene were selected from SalI and PstI libraries of mitochondrial DNA (mtDNA) of Korean ginseng. The sizes of mtDNA fragments inserted in SalI and PstI clones were 3.4 kb and 13 kb, respectively. Southern blot analysis with [$^{32}P$] labelled Oenothera atPA gene probe showed that atpA gene sequence was located in 2.0 kb XkaI fragment in PstI clone and in 1.7 kb XbaI fragment in SalI clone. A partial sequening ascertained that the SalI clone included about 1.2 kb fragment from SalI restriction site to C-terminal sequence of this gene but about 0.3 kb N-terminal sequence of open reading frame was abscent. The PstI fragment was enough large to cover the full sequence of atpA gene. The same restriction pattern of the overlapped region suggests that both clones include the same fragment of atiA locus. Data of Southern blot analysis and partial nucleotide sequencing suggested that mtDNA of Korean ginseng has a single copy of atpA gene. Key words ATPase a-subunit, mitochondrial DNA, Panax ginseng.

  • PDF