• Title/Summary/Keyword: Single fracture

Search Result 654, Processing Time 0.022 seconds

Influence of Friction Between Materials on the Axial Direction Pull Force in Single Clinching (싱글 클린칭 공정에서 소재간 마찰이 축방향 분리력에 미치는 영향)

  • Lee, D.W.;Sekar, R.;Lee, C.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 2021
  • In this paper, a parametric study on the influence of friction between materials on pull force in single clinching is conducted using an axisymmetric elasto-plastic finite element method and law of Coulomb friction. An appropriate finite element analysis model is given, which minimizes the effect of the material model and numerical factors including the number of quadrilateral finite elements and blank radius. It is emphasized that the elasto-plastic material model should be employed because the elastic deformation of the internal region is affected more by the pull force. It has been shown that the pull force increases as friction coefficient increases and that the optimized friction coefficient is around 0.4, which is qualitatively comparable with its theoretical value. When the friction coefficient reaches 0.5 in the example studied, the neck fracture is predicted.

ANTERIOR ESTHETIC IMPROVEMENT THROUGH ORTHODONTIC EXTRUSIVE REMODELING AND SINGLE-UNIT IMPLANTATION IN A FRACTURED UPPER LATERAL INCISOR WITH ALVEOLAR BONE LOSS: A CASE REPORT (치은연하 파절로 치조골 소실을 동반한 상악측절치에서 orthodontic extrusive remodeling후 임플란트 식립을 통한 심미수복: 증례보고)

  • Hwang, Soo-Youn;Shon, Won-Jun;Han, Young-Chul;Bae, Kwang-Shik;Back, Seung-Ho;Lee, Woo-Cheol;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • The treatment of esthetic areas with single-tooth implants represents a new challenge for the clinician. In 1993, a modification of the forced eruption technique, called "orthodontic extrusive remodelling," was proposed as a way to augment both soft- and hard-tissue profiles at potential implant sites. This case report describes augmentation of the coronal soft and hard tissues around a fractured maxillary lateral incisor associated with alveolar bone loss, which was achieved by forced orthodontic extrusion before implant placement. Through these procedures we could reconstruct esthetics and function in a hopeless tooth diagnosed with subgingival root fracture by trauma.

Flexural Tensile Strength of CJP Groove Welded Joints Connecting Thick HSA800 Plates (HSA800 후판재의 완전용입 맞댐용접부 휨-인장강도 실험)

  • Lee, Cheol Ho;Kim, Dae Kyung;Han, Kyu Hong;Park, Chang Hee;Kim, Jin Ho;Lee, Seung Eun;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.407-418
    • /
    • 2014
  • As a continuing work of previously conducted standard tension tests, full-scale flexural tests were conducted in this study to assess the structural performance the CJP groove welded joints connecting thick HSA800 plates. Two welding electrodes were available at the time of this experimental research; one was GMAW-based electrode A and the other FCAW-based electrode B. Three full-scale box-type beam specimens with single bevel- and V-groove CJP welded joints were fabricated from 60mm and 25mm thick HSA800 plates according to the AWS-prequalified groove welded joint details. In designing the specimens, all possible limit states like local and lateral torsional buckling were carefully controlled in order to induce flexural plastic yielding or eventual joint fracture. All the CJP joints made by both welding electrodes showed satisfactory performance and were able to transfer the tensile flange forces higher than that corresponding to the measured tensile strength of HSA800 flange plates. However, it should be noted that, during fabrication, serious concerns about the welding efficiency and workability of the GMAW-based electrode were raised by a certified welder. The fracture occurred at the unbeveled (or vertical) interface between the weldment and the base metal when the GMAW-based electrode was used in the single-bevel joint, implying the possibility of insufficient melting. Thus, the FCAW-based electrode B is again recommended as the choice of welding electrode for HSA800 plates. The limited test data of this study implies that the V-groove CJP joint should be used in favor of the single bevel CJP joint, if possible.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.

Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.372-379
    • /
    • 2006
  • The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.

Factors affecting waterproof efficiency of grouting in single rock fracture

  • Lee, Hang Bok;Oh, Tae-Min;Park, Eui-Seob;Lee, Jong-Won;Kim, Hyung-Mok
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.771-783
    • /
    • 2017
  • Using a transparent fracture replica with aperture size and water-cement ratio (w/c), the factors affecting the penetration behavior of rock grouting were investigated through laboratory experiments. In addition, the waterproof efficiency was estimated by the reduction of water outflow through the fractures after the grout curing process. Penetration behavior shows that grout penetration patterns present similarly radial forms in all experimental cases; however, velocity of grout penetration showed clear differences according to the aperture sizes and water-cement ratio. It can be seen that the waterproof efficiency increased as the aperture size and w/c decreased. During grout injection or curing processes, air bubbles formed and bleeding occurred, both of which affected the waterproof ability of the grouting. These two phenomena can significantly prevent the successful performance of rock grouting in field-scale underground spaces, especially at deep depth conditions. Our research can provide a foundation for improving and optimizing the innovative techniques of rock grouting.

Experimental and Analytical Study on the Burst Pressure of Steam Generator Tubes with T-type Combination Cracks (증기발생기 전열관에 존재하는 T-형 복합 균열의 파열압력 시험 및 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.38-43
    • /
    • 2005
  • Several nuclear power plants reported that they often found the combination cracks, which consist of longitudinal and circumferential cracks in the tubes. For the burst pressure of a tube with a single longitudinal or circumferential crack several experimental equations have been proposed in published literatures. But for the combination crack appropriate fracture criterion has not been proposed yet. In this study the burst pressures of a tube with a longitudinal crack or a T-type combination crack consisting of longitudinal and circumferential cracks were obtained experimentally and analytically. Fracture parameters such as crack opening angle (COA) were investigated by using elastic plastic analysis. Also the burst pressure far a T-type combination crack located near a tubesheet was considered to develop a length-based criterion. Because most of the axial, circumferential or combination cracks initiate in roll transition zone near the tubesheet.

Preparation and Toughening of Hot-Pressed SiC-AIN Solid Solutions

  • Lim, Chang-Sung
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.224-229
    • /
    • 1999
  • The preparation and toughening of SiC-AIN solid solution from powder mixtures of $\beta$-SiC, AIN and $\alpha$-SiC by hot-pressing were studied in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC(3C) powders causing transformation to the 2H(wurtzite) structure appeared to depend on hot-pressing temperatures and an additive of $\alpha$-SiC. For the composition of 49wt% SiC with 2 wt% $\alpha$-SiC and 47.5 wt% AIN47.5wt% SiC with 5 wt % $\alpha$-SiC at 203$0^{\circ}C$ for 1 h, th complete solid solutions with a single phase of 2H could be obtained. The appreciable amount of $\alpha$-SiC could develop the columnar inter-grains of 4H phase and the stable 2H phase with the relatively uniform composition and grain size distributions. The effect of $\alpha$-SiC on the phases present and compositional microstructures with columnar inter-grains was invetigated using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The fracture toughness and Vickers hardness of the hot-pressed solid solutions wre examined by the indentation-fracture-test method.

  • PDF

Synthesis of $\alpha$-Sialon Ceramics from an Alkoxide and Their Mechanical Properties(I) (알콕사이드로부터 $\alpha$-Sialon 세라믹스의 제조 및 기계적 성질(I))

  • 이홍림;윤창현;조덕호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.130-140
    • /
    • 1991
  • The powders of the system Si3N4-Y2O3-AlN were prepared using Si(OC2H5)4 and YCl3.6H2O together with commercial AlN powder. $\alpha$-Si3N4 was prepared by the carbothermal reduction and nitridation of the hydrolyzed gel at 135$0^{\circ}C$ for 10h in N2 atmosphere. YCl3.6H2O was observed to be changed to Y2O3 during the reaction. $\alpha$-Sialon(X=0.2, 0.4, 0.6) ceramics were obtained by hot-pressing the Si3N4-Y2O3-AlN mixture at 178$0^{\circ}C$ for 1h under 30 MPa. The content of $\alpha$-Sialon increased with increasing metal solubility(x value) and $\alpha$-Sialon single phase was obtained at the metal solubility of 0.6. With increasing metal solubility, flexural strength, fracture toughness and thermal shock resistence were decreased, while the microhardness was increased. Large elongated $\beta$-Si3N4 grains were mainly observed at lower metal solubility. Mechanical prorerties of the sintered ceramics with X=0.2 were measured as follows : flexural strength ; 650 MPa, fracture toughness ; 3.63 MN/m3/2, hardness ; 14.7 GPa, thermal shock resistence temperature ; 58$0^{\circ}C$.

  • PDF

An Experimental Study on the Growth Behavior of Multi-Surface-Cracks in Type 304 Stainless Steel at Elevated Temperature (고온하 304 스테인리스철의 표면규열의 성장거동에 관한 실험적 연구)

  • 서창민;신형섭;황남성;정대윤
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.63-72
    • /
    • 1995
  • The crack which is discovered in various structures and machine elements is multi-cracks. Multi-cracks may cause serious problems because they grow individually, and coalesce into one and it leads to fracture. Fatigue tests have been carried out to study the growth and coalescence behavior of multi-surface-cracks initiated at the semicircular surface notch in type 304 stainless steel at elevated temperature. The results are as follows; When multi-surface-cracks are lying on the surface of material, the major surface crack has greater influence on the fatigue life than the subcracks. The aspect ratio of multi-surface-cracks is lower than that of single crack because of the interaction and coalescence of surface cracks. Crack growth shape turns to semiellipse from the semicircle notch. After coalescence, the surface crack length increases rapidly, and it leads to fracture. Further, the slope transition of Paris law was found in the da/dN-$\Delta$K$_1$ plots.

  • PDF