• Title/Summary/Keyword: Single fracture

Search Result 654, Processing Time 0.021 seconds

A Clinical Study of Intercostal Neuropathy after Rib Fracture (늑골 골절 후 발생한 늑간 신경병증의 임상적 연구)

  • Kang, Jung-Hun;Lee, Seog-Ki;Seo, Min-Bum;Na, Jeong-Yeop;Jang, Jae-Hyouk;Kim, Kweon-Young
    • Journal of Chest Surgery
    • /
    • v.43 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • Background: The purpose of this study is to evaluate intercostal neuropathy after rib fracture and to determine the severity of intercostal neuropathy with using a numerical rating scale and according to the duration of pain and the body mass index. Material and Method: We measured the positive sharp wave and fibrillation on the intercostal and paraspinal muscles in the thoracic region by performing needle electromyography in 47 patients who had intercostal neuralgia after rib fracture and who had needed daily analgesic for more than three months. Result: We diagnosed 11 cases as intercostal neuropathy among the 47 cases. Of the total 11 cases, 8 were male and 3 were female and they were most often of an active generation in the community. The common location of intercostal neuropathy was the intercostal space below the rib fracture and from the 7th to the 12th intercostal rib area. The incidence of intercostal neuropathy was significantly related with multiple rib fracture rather than single rib fracture. The symptoms observed were chest pain (90.9%), sensory change (81.8%), paresthesia and numbness (63.6%), back pain (27.2%) and muscle atrophy (18.2%). The numerical rating scale, the duration of pain and the body mass index showed no significant correlation with the severity of intercostal neuropathy. Conclusion: We concluded that the electrodiagnostic approach with considering the affecting factors and the clinical findings will be helpful for diagnosing and treating persistent intercostal neuralgic pain (more than 3 months) after rib fracture.

Finite Difference Modeling for Scale-Dependent Dispersivity in a Fractured Medium

  • Han, Choongyong;Kang, Joe M.;Choe, Jonggeun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.102-105
    • /
    • 2002
  • A new finite difference model is developed for solute transport in a fractured medium that can consider advection, adsorption, first-order decay, and scale-dependent dispersivity of individual fractures. In the model, the dispersivity of individual fractures is employed as a variable increasing with travel distance from a source. The model is verified using an analytical solution for a single fracture. A solution from the new model is independent of the outlet boundary condition of fractures, and has little numerical dispersion error.

  • PDF

A Study on Fatigue Damage Modeling Using Back-Propagation Neural Networks (역전파신경회로망을 이용한 피로손상모델링에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.258-269
    • /
    • 1999
  • It is important to evaluate fatigue damage of in-service material in respect to assure safety and remaining fatigue life in structure and mechanical components under cyclic load . Fatigue damage is represented by mathematical modelling with crack growth rate da/dN and cycle ration N/Nf and is detected by X-ray diffraction and ultrasonic wave method etc. But this is estimated generally by single parameter but influenced by many test conditions The characteristics of it indicates fatigue damage has complex fracture mechanism. Therefore, in this study we propose that back-propagation neural networks on the basis of ration of X-ray half-value breath B/Bo, fractal dimension Df and fracture mechanical parameters can construct artificial intelligent networks estimating crack growth rate da/dN and cycle ratio N/Nf without regard to stress amplitude Δ $\sigma$.

  • PDF

R-Curve Behavior of Silicon Nitride at Elevated Temperatures

  • Sakaguchi, Shuji
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.331-335
    • /
    • 1998
  • R-curve, of three kinds of silicon nitride-based ceramics were measured, using single edge notched beam (SENB) method at room and at elevated temperatures, up to $1200^{\circ}C$. Stable fraacture was seen on ceramic materials with SENB specimens if the machined notch is deep enough, even though the crack resistance did not increase with crack length. Hot pressed silicon nitride did not show the rising R-curve behavior at room temperature, but it showed some rising at $1000^{\circ}C$ and above. Si3N4 reinforced with SiC whiskers showed no rising behavior at room and elevated temperatures, as it has smaller grain size, compare to the monolithic specimen. Gas pressure sintered silicon nitride had very large and elongated grains, and it showed rising R-curve even at room temperature. However, it showed some creep behavior at $1200^{\circ}C$ and the calculated R-curve on this condition did not show a good result. We cannot apply this technique on this condition for obtaining the R-curve.

  • PDF

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test (펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가)

  • Oh, Seung-Kyu;Hwang, Young-Taek;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

Fracture Characteristic of Double Cantilever Beam Specimen Using Lightweight Material at Sliding Mode (미끄러짐 모드에서의 경량 재료를 이용한 이중외팔보 시험편의 파손 특성)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.16-23
    • /
    • 2021
  • The fracture characteristic of the bonded interface under the application of a sliding load to a double cantilevered specimen manufactured using lightweight material was examined. Inhomogeneously bonded materials such as Al6061-T6, CFRP, and CFRP-Al were employed. In the experiment, the specimen was loaded on both directions by applying a shearing load to the bonding interface. The experimentally obtained stress, specific strength and energy release rate values were examined. CFRP exhibited excellent specific strength. The experimental results demonstrated that the inhomogeneous bonded material CFRP-Al exhibited an overall high performance in comparison with the single materials.

Effect of the Cross Sectional Shapes on the Static and Fatigue Torque Transmission Capabilities of Adhesive Single Lap Joints (단면형상에 따른 단일겹치기 이음의 피로 및 정적 토크 전달특성에 관한 실험적 연구)

  • 최진경;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.835-845
    • /
    • 1994
  • In this paper, the effects of the adhesive thickness and adherend roughness on the static and fatigue strengths of the adhesively bonded circular single lap joints has been investigated by an experimental method. The stacking sequence effect of the composite adherend on the static and fatigue strength and the fracture patterns of the adhesive failure were also observed. Since the circular single lap joint fails catastrophically beyond the static strength of fatigue limit, the tubular polygonal adhesively bonded joints such as triangular, tetragonal, pentagonal, hexagonal as well as elliptical joints were manufactured in order to give partial mechanical characteristics to the adhesively bonded tubular joints. These joints were tested both in static and fatigue modes. From the experimental investigations, it was found that the fatigue strength of the circular adhesively bonded joints was much dependent on the arithmetical average surface roughness of the adherends and the polygonal adhesively bonded joints had better fatigue strength characteristics than the circular adhesively bonded joints.

Strengthening of Substrate Glass for LCD by Single ton Exchange Process (Single Ion Exchange Process에 의한 LCD용 기판유리의 강화)

  • 이회관;오영석;이용수;강원호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.675-679
    • /
    • 2002
  • To produce a strengthened glass, single ion exchange properties such as three-point bend strength and residual stress were investigated in soda-lime-silicate substrate glass for display use. The present work showed that the maximum value of strength was 62.5${\times}$10$\sub$6/ kg/㎡ after, the two-step single ion exchange process at 470$^{\circ}C$ for 1 h and 450$^{\circ}C$ for 24 h. As the result of the fracture analysis after bending test, the residual stress on the fractured surface of the strengthened glass increased the flexibility by means of absorbing the elastic deformation energy in the glass. Also, the effects of absorbing the elastic deformation energy were analysed by curvature change, number of multiple crack branches and brittleness.

Application of the Homogenization Analysis to Calculation of a Permeability Coefficient (투수계수 산정을 위한 균질화 해석법의 적응)

  • 채병곤
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.