• 제목/요약/키워드: Single fracture

검색결과 654건 처리시간 0.023초

란타넘 산화물의 분산을 통해 향상된 파괴인성을 갖는 몰리브데넘 합금의 제조 (Fabrication of Molybdenum Alloys with Improved Fracture Toughness through the Dispersion of Lanthanum Oxide)

  • 최원준;박천웅;박정효;김영도;변종민
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.208-213
    • /
    • 2019
  • In this study, lanthanum oxide ($La_2O_3$) dispersed molybdenum ($Mo-La_2O_3$) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of $La_2O_3$ dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of $La_2O_3$ from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the $Mo-0.3La_2O_3$ specimen sintered by pressureless sintering is approximately 99%, and $La_2O_3$ with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is $19.46MPa{\cdot}m^{1/2}$, an improvement of approximately 40% over the fracture toughness of $13.50MPa{\cdot}m^{1/2}$ on a pure-Mo specimen without $La_2O_3$, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of $La_2O_3$.

Evaluation of intaglio surface trueness, wear, and fracture resistance of zirconia crown under simulated mastication: a comparative analysis between subtractive and additive manufacturing

  • Kim, Yong-Kyu;Han, Jung-Suk;Yoon, Hyung-In
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.122-132
    • /
    • 2022
  • PURPOSE. This in-vitro analysis aimed to compare the intaglio trueness, the antagonist's wear volume loss, and fracture load of various single-unit zirconia prostheses fabricated by different manufacturing techniques. MATERIALS AND METHODS. Zirconia crowns were prepared into four different groups (n = 14 per group) according to the manufacturing techniques and generations of the materials. The intaglio surface trueness (root-mean-square estimates, RMS) of the crown was measured at the marginal, axial, occlusal, and inner surface areas. Half of the specimens were artificially aged in the chewing simulator with 120,000 cycles, and the antagonist's volume loss after aging was calculated. The fracture load for each crown group was measured before and after hydrothermal aging. The intaglio trueness was evaluated with Welch's ANOVA and the antagonist's volume loss was assessed by the Kruskal-Wallis tests. The effects of manufacturing and aging on the fracture resistance of the tested zirconia crowns were determined by two-way ANOVA. RESULTS. The trueness analysis of the crown intaglio surfaces showed surface deviation (RMS) within 50 ㎛, regardless of the manufacturing methods (P = .053). After simulated mastication, no significant differences in the volume loss of the antagonists were observed among the zirconia groups (P = .946). The manufacturing methods and simulated chewing had statistically significant effects on the fracture resistance (P < .001). CONCLUSION. The intaglio surface trueness, fracture resistance, and antagonist's wear volume of the additively manufactured 3Y-TZP crown were clinically acceptable, as compared with those of the 4Y- or 5Y-PSZ crowns produced by subtractive milling.

Comparative analysis on intaglio surface trueness, wear volume loss of antagonist, and fracture resistance of full-contour monolithic zirconia crown for single-visit dentistry under simulated mastication

  • Kim, Yong-Kyu;Yoon, Hyung-In;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권3호
    • /
    • pp.173-181
    • /
    • 2022
  • PURPOSE. This analysis aimed to evaluate the intaglio surface trueness, antagonist's wear volume loss, and fracture resistance of full-contour crowns of (Y, Nb)-stabilized fully-sintered zirconia (FSZ), 4 mol% or 5 mol% yttria-stabilized partially sintered zirconia (4YZ or 5YZ) with high-speed sintering. MATERIALS AND METHODS. A total of 42 zirconia crowns were separated into three groups: FSZ, 4YZ, and 5YZ (n = 14). The intaglio surface trueness of the crowns was evaluated at the inner surface, occlusal, margin, and axial areas and reported as root-mean-square, positive and negative average deviation. Half of the specimens were aged for 120,000 cycles in the chewing simulator, and the wear volume loss of antagonist was measured. Before and after chewing, the fracture load was measured for each group. The trueness values were analyzed with Welch's ANOVA, and the wear volume loss with the Kruskal-Wallis tests. Effect of the zirconia type and aging on fracture resistance of crowns was tested using two-way ANOVA. RESULTS. The intaglio surface trueness measured at four different areas of the crown was less than 50 ㎛, regardless of the type of zirconia. No significant P in wear volume loss of antagonists were detected among the groups (P > .05). Both the type of zirconia and aging showed statistically significant effects on fracture resistance (P < .05). CONCLUSION. The full-contour crowns of FSZ as well as 4YZ or 5YZ with high-speed sintering were clinically acceptable, in terms of intaglio surface trueness, antagonist's wear volume loss, and fracture resistance after simulated mastication.

Epidemiology and patterns of nasal bone fracture in elderly patients in comparison to other age groups: an 8-year single-center retrospective analysis

  • Jung, Seil;Yoon, Sihyun;Kim, Youngjun
    • 대한두개안면성형외과학회지
    • /
    • 제23권5호
    • /
    • pp.205-210
    • /
    • 2022
  • Background: Nasal bone fractures are the most common type of facial bone fracture, but are under-studied in adults above 65 years of age. Therefore, we investigated the epidemiology and patterns of nasal bone fractures among older adults in comparison to different age groups. Methods: This retrospective study included 2,321 nasal bone fracture patients who underwent surgery at our hospital from January 2010 to December 2017. The patients were classified by age as preschoolers, school-age children, young and middle-aged adults, and the elderly. We performed pairwise comparisons between elderly patients and each other age group in terms of sex, cause of injury, and fracture type. Results: The 2,321 nasal bone fracture patients included 76 elderly patients (50 men [65.8%] and 26 women [34.2%]). In these patients, the two most common injury causes were falling or slipping down (n= 39; 51.3%) and road traffic accidents (n= 19; 25.0%). According to the Stranc and Robertson classification, the most common force vector was lateral, and plane 2 fractures with lateral forces predominated. Conclusion: The elderly showed similar patterns of nasal bone fractures to those observed in young and middle-aged adults, but significant differences from preschoolers (in the injury vector and plane of fracture) and from school-age children (in the sex ratio and plane of fracture). However, elderly patients presented significantly different epidemiological characteristics compared to the other three groups. Therefore, it is necessary to improve the quality of life of the elderly and prepare for the upcoming super-aged society by taking steps to reduce the incidence and severity of fractures. Possible options for doing so include strengthening individual-level safety factors and expanding the social safety net for the elderly.

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

구치용 도재소부금관과 전부도재관에 파절을 일으키는 한국음식에 관한 연구 (A comparative study on the correlation between Korean foods and the fractures of PFG and all ceramic crowns for posterior applications)

  • 김정호;이재봉
    • 대한치과보철학회지
    • /
    • 제47권2호
    • /
    • pp.156-163
    • /
    • 2009
  • 연구목적: 4종 구치용도재관(Full-porcelain-occlusal-surfaced PFG, Half-porcelain-occlusal-surfaced PFG, Empress 2, Ice Zirkon)과 선별된 한국음식의 fracture load와 dynamic cyclic load를 측정하여 구치용 도재관에 파절을 일으킬 가능성이 있는 한국음식을 선별하는데 있다. 연구재료 및 방법: 4종의 각 porcelain 보철물 system 당 15개의 축대칭을 이루는 crown을 제작했다. 이때 occlusal reduction은 1.5-2.0 mm로 했다(중심부 1.5 mm, 교두부 2.0 mm). 각 15개의 시편의 교합면 중앙부에 직경 5 mm의 stainless steel ball을 위치시킨 후 Instron 4465 universal testing machine(Instron, Norwood, MA USA)을 이용하여 5 mm/min의 crosshead speed로 수직 부하를 주어 파절을 일으키는 최대 부하(N)를 기록했다. 이후, 한국음식 중 삶은 게, 닭(뼈포함), 소갈비(뼈포함), 마른 오징어, 건멸치, 사탕, 호두껍질을 표본으로 설정하고 이들을 파절시키는 최대 부하(N)를 universal testing machine(Instron 4465) 에서 측정하여 기록했다. 각 항목당 15번을 측정했다. 음식물을 파절시킬 때 필요한 최대부하와 각 보철물의 파절저항을 비교하여 한국의 식습관과 도재를 이용한 보철물 파절의 상관관계를 조사하였다. fracture loads는 analysis of variance 와 Post Hoc tests를 이용해서 분석하였다($\alpha$=0.05). 차후에 위에서 얻은 결과를 바탕으로 Hydraulic Dynamic Fatigue Testing Machine(858 Bionix II, MTS systems, Eden Prairie, MN USA)를 이용하여 4종의 각 porcelain 보철물 system당 5개의 crown에 14Hz Cyclic Load를 가하여 crown에 파절을 일으키는 masticatory cycle수를 알아 보았다. Load 수치는 41.0 N(건멸치 파절강도), 169.0 N(마른오징어 파절강도), 382.9 N(닭뼈 파절강도), 2224.8 N(사탕 파절강도)로 설정하였다. 결과: 95% confidence intervals for mean fracture load는 2599.3-2809.1 N(완전도재교합면 PFG), 3689.4-3819.9 N(반도재교합면 PFG), 1501.2-1867.9 N(Ice Zirkon), 803.2-1188.5 N(Empress 2)로 나왔고 95% confidence intervals for dynamic cyclic load on fracture는 instron 상에서 도재보철물에 파절을 일으키지 않은 load인 2224.8 N(사탕 파절강도)와 382.9 N(닭뼈 파절강도)로 실험했을 때, 2224.8 N에서 4796.8-9321.2 cycles(완전도재교합면 PFG), 2224.8 N에서 881705.1-1143565.7 cycles(반도재교합면 PFG), 382.9 N에서 979993.0-1145773.4 cycles(Ice Zirkon), 382.9 N에서 564.1-954.7 cycles(Empress 2)로 나왔다. 결론: 통계학적으로 유의할 만한 차이가 그룹들 간 fracture load에서 나타났다. 한국음식물 중 소갈비(뼈포함)와 사탕(자두맛캔디)은 구치용 도재보철물을 파절시킬 가능성이 있는 음식물로 밝혀졌다. 단일수직부하에서는 파절이 생기지 않는 경우라 할지라도 dynamic cyclic load를 줄 경우 일정 주기 후에 파절이 생기는 결과를 얻을 수 있었다.

Ti-(44-54)at.%Al 열처리 주조합금의 미세조직과 인장특성에 관한 연구 (A Study on the Microstructures and Tensile Properties of Heat-Treated Cast Ti-(44-54)at.%Al Alloys)

  • 정재영
    • 한국주조공학회지
    • /
    • 제37권6호
    • /
    • pp.199-206
    • /
    • 2017
  • In this study, the variations of microstructures and tensile properties of Ti-(44-54)at.%Al binary alloys were investigated. The heat-treated microstructure depended greatly on their solidification structure and annealing temperature. We measured the variations of volume fractions of primary and secondary lamellar structure as a function of the heat treatment temperature in a Ti-47at.%Al alloy. The variation of ductility as a function of Al content was in good agreement with the change of fracture mode in the tensile fracture surface. It can be inferred that the variations of yield stress and hardness of ${\gamma}$ phase in a single ${\gamma}$-phase field region are enhanced by anti-site defects created by deviations from the stoichiometric composition. In a Ti-47at.%Al alloy within the (${\alpha}_2+{\gamma}$) two-phase field, the yield stress tended to be the maximum at a near equal volume fraction of lamellar and ${\gamma}$ grains. The ductility depended sensitively on the overall grain size and Al content. The calculation of fracture strain using Chan's model indicated that the change of ductility as a function of annealing temperature was primarily determined by the variations in the overall grain size and lamellar volume fraction.

치과용 지르코니아 표면처리방법에 따른 지르코니아와 전장용 도재의 결합강도 관찰 (Shear Bond Strength of Zirconia and Ceramics according to Dental Zirconia Surface Treatment)

  • 이광영;최성민
    • 대한치과기공학회지
    • /
    • 제41권4호
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: The dental CAD / CAM system has been popular with the development of the digital dental industry. Zirconia is a typical material in dental CAD / CAM systems. Zirconia crowns are classified into single layer and double layer. This study is about the double layer crown of zirconia. The surface roughness, bond strength and fracture patterns of the zirconia surface were observed. Methods: Zirconia blocks were cut using a low speed cutter. Sintered to form a plate shape (6mm × 6mm × 3mm). The prepared specimens were surface treated in four ways. Surface roughness and bond strength were measured. And the fracture pattern was observed. Results: Result of surface treatment of zirconia. The surface roughness test results were as ET 2.87 ㎛, ST 2.67 ㎛, LT 2.44 ㎛, AT 2.41 ㎛, CN 2.08 ㎛ order. Bond Strength results were as LT 25.09 MPa, AT 23.27 MPa, ST 21.27 MPa, ET 21.09 MPa, CN 16.12 MPa order. Fracture patterns showed cohesive failure of 25-50% of the bond area. Conclusion: Surface roughness, bond strength and fracture pattern of the zirconia surface were observed. Etching the surface treatment of zirconia materials has been shown to affect the surface roughness. Zirconia special binder treatment has been shown to affect the bond strength improvement.

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

Alloy Wheel용 저압 주조 A356-T6 합금의 기계적 특성 (Mechanical Properties of Low-Pressure Die Cast A356-T6 alloys for Automotive Wheels)

  • 유봉준;김정호;윤형석;어순철
    • 한국주조공학회지
    • /
    • 제34권1호
    • /
    • pp.6-13
    • /
    • 2014
  • The mechanical properties of low-pressure die cast (LPDC) A356-T6 automotive road wheels are evaluated and correlated with their corresponding microstructures. In this study, two types of alloy wheels processed using different LPDC gating system are investigated. The yield stress, tensile stress, and elongation values tested at room temperature are correlated with the secondary dendrite arm spacing (SDAS) with respect to the gating system, and are also compared with similar studies. The SDAS and precipitates are examined using optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The phase information is also investigated using X-ray diffraction. Charpy impact tests are also performed from $-100^{\circ}C$ to $200^{\circ}C$, and the fracture surfaces are examined using SEM. The impact energy is demonstrated to increase with increasing temperatures without exhibiting specific transition behaviors as in other nonferrous alloys. The fracture toughness is also evaluated using three point bend test with single-edged bend specimens. The obtained fracture toughness values are in good agreement with those in similar studies.