• 제목/요약/키워드: Single emissive layer

검색결과 15건 처리시간 0.022초

초고진공 전자공명 플라즈마를 이용한 SiC buffer layer 형성에 관한 연구 (A Study on SiC Buffer Layer Prepared by Ultra High Vacuum Electron Cyclotron Resonance CVD)

  • 전우곤;표재확;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.326-328
    • /
    • 1995
  • SiC buffer layers were grown on Si(100) substrates by ultra-high-vacuum electron cryclotron resonance plasma (UHV ECR plasma) from $CH_4/H_2$ mixture at 700$^{\circ}C$. The electron densities and temperature were measured by single probe. The axial plasma potentials measured by emissive probe had the double layer structure at positive substrate bias. Piranha cleaning was carried out as ex-situ wet cleaning. Clean and smooth silicon surface were prepared by in-situ hydrogen plasma cleaning at 540$^{\circ}C$. A short exposure to hydrogen plasma transforms the Si surface from 1$\times$1 to 2$\times$1 reconstruction. It was monitored by reflection high energy electron diffraction (RHEED). The defect densities were analysed by the dilute Schimmel etching. The results showed that the substrate bias is important factor in hydrogen plasma cleaning. The low base pressure ($5\times10^{-10}$ torr) restrains the $SiO_2$ growth on silicon surface. The grown layers showed different characteristics at various substrate bias. RHEED and K-ray Photoelectron spectroscopy study showed that grown layer was SiC.

  • PDF

Improved Performance of White Phosphorescent Organic Light-Emitting Diodes through a Mixed-Host Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.642-646
    • /
    • 2009
  • Highly efficient white phosphorescent organic light-emitting diodes with a mixed-host structure are developed and the device characteristics are studied. The introduction of a hole-transport-type host (N, N'-dicarbazolyl-3-3-benzen (mCP)) into an electron-transport-type host (m-bis-(triphenylsilyl)benzene (UGH3)) as a mixed-host emissive layer effectively achieves higher current density and lower driving voltage. The peak external quantum and power efficiency with the mixed-host structure improve up to 18.9% and 40.9 lm/W, respectively. Moreover, this mixed-host structure device shows over 30% enhanced performance compared with a single-host structure device at a luminance of 10,000 $cd/m^2$ without any change in the electroluminescence spectra.

Excimer-Based White Phosphorescent OLEDs with High Efficiency

  • Yang, Xiaohui;Wang, Zixing;Madakuni, Sijesh;Li, Jian;Jabbour, Ghassan E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1520-1521
    • /
    • 2008
  • There are several ways to demonstrate white organic light emitting diodes (OLEDs) for displays and solid state lighting applications. Among these approaches are the stacked three primary or two complementary colors light-emitting layers, multiple-doped emissive layer, and excimer and exciplex emission [1-10]. We report on white phosphorescent excimer devices by using two light emitting materials based on platinum complexes. These devices showed a peak EQE of 15.7%, with an EQE of 14.5% (17 lm/W) at $500\;cd/m^2$, and a noticeable improvement in both the CIE coordinates (0.381, 0.401) and CRI (81). Devices with the structure ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 12% FPt (10 nm) /26 mCPy: 2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al [device 1], ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4 (15 nm)/26 mCPy: 12% FPt (10 nm)/BCP (40 nm)/CsF/Al [device 2], and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4: 12% FPt (25 nm)/BCP (40 nm)/CsF/Al [device 3] were fabricated. In these cases, the emissive layer was either the double-layer of 26 mCPy:12% FPt and 15 nm 26 mCPy: 2% Pt-4, or the single layer of 26mCPy with simultaneous doping of Pt-4 and FPt. Device characterization indicates that the CIE coordinates/CRI of device 2 were (0.341, 0.394)/75, (0.295, 0.365)/70 at 5 V and 7 V, respectively. Significant change in EL spectra with the drive voltage was observed for device 2 indicating a shift in the carrier recombination zone, while relatively stable EL spectra was observed for device 1. This indicates a better charge trapping in Pt-4 doped layers [10]. On the other hand, device 3 having a single light-emitting layer (doped simultaneously) emitted a board spectrum combining emission from the Pt-4 monomer and FPt excimer. Moreover, excellent color stability independent of the drive voltage was observed in this case. The CIE coordinates/CRI at 4 V ($40\;cd/m^2$) and 7 V ($7100\;cd/m^2$) were (0.441, 0.421)/83 and (0.440, 0.427)/81, respectively. A balance in the EL spectra can be further obtained by lowering the doping ratio of FPt. In this regard, devices with FPt concentration of 8% (denoted as device 4) were fabricated and characterized. A shift in the CIE coordinates of device 4 from (0.441, 0.421) to (0.382, 0.401) was observed due to an increase in the emission intensity ratio of Pt-4 monomer to FPt excimer. It is worth noting that the CRI values remained above 80 for such device structure. Moreover, a noticeable stability in the EL spectra with respect to changing bias voltage was measured indicating a uniform region for exciton formation. A summary of device characteristics for all cases discussed above is shown in table 1. The forward light output in each case is approximately $500\;cd/m^2$. Other parameters listed are driving voltage (Bias), current density (J), external quantum efficiency (EQE), power efficiency (P.E.), luminous efficiency (cd/A), and CIE coordinates. To conclude, a highly efficient white phosphorescent excimer-based OLEDs made with two light-emitting platinum complexes and having a simple structure showed improved EL characteristics and color properties. The EQE of these devices at $500\;cd/m^2$ is 14.5% with a corresponding power efficiency of 17 lm/W, CIE coordinates of (0.382, 0.401), and CRI of 81.

  • PDF

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • 백충렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

열경화가 가능한 poly(p-phenylenevinylene)계 정공전달 물질의 합성 및 특성 (Synthesis and Characterization of Thermally Cross-linkable Hole Transporting Material Based on Poly(p-phenylenevinylene) Derivative)

  • 최지영;이봉;김주현
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.299-303
    • /
    • 2008
  • 열경화가 가능한 PPV유도체인 poly[(2,5-dimethoxy-1,4-phenylenevinylene)-alt-(1,4-phenylenevinylene)] (Cross-PPV)를 Heck coupling 반응을 이용하여 합성하였다. Cross-PPV 박막은 $200^{\circ}C$에서 경화 시키면 일반적인 유기용매에 용해되지 않는 불용성의 고분자 박막이 된다. 열경화 전 후의 Cross-PPV의 구조는 FT-IR로 확인하였으며 구조의 차이는 크지 않았다. 경화된 Cross-PPV는 일반적인 유기용매에 대하여 내용매성이 강하다. 순환전압전류법과 흡수분광법으로 측정한 경화된 Cross-PPV의 호모 및 루모 에너지 준위는 각각 -5.11 eV와 -2.56 eV으로 ITO로 부터의 정공주입장벽(hole injection barrier)이 작아(약 0.1 eV) 정공주입층으로 효과적으로 사용 할 수 있다. 호모 및 루모 에너지 준위가 각각 -5.44 eV, -3.48 eV인 poly(1,4-phenylenevinylene-(4-dicyanomethylene-4H-pyran)-2,6-vinylene-1,4-phenylene-vinylene-2,5-bis(dodecyloxy)-1,4-phenylenevinylene) (PM-PPV)을 발광층으로 사용하여 두층의 구조(bilayer structure)를 갖는 소자(ITO/crosslinked Cross-PPV/PM-PPV/Al)를 제작, 특성을 평가한 결과 최대 효율은 0.024 cd/A, 최대 발광세기는 $45cd/m^2$으로 단층형 소자(ITO/PM-PPV/Al)(최대 효율 = 0.003 cd/A, 최대 발광세기 = $3cd/m^2$)에 비하여 매우 월등한 성능을 나타냄을 확인하였다. 또한 두층의 구조를 가지는 다층형 소자의 발광스펙트럼은 단층형 소자의 발광 스펙트럼과 동일하다. 이러한 사실들로 보아 ITO 및 Al에서 주입된 전자는 모두 발광층인 PM-PPV층에서 재결합(recombination)되어 여기자(exciton)가 형성되는 것으로 사료된다.