• Title/Summary/Keyword: Single crystal NMR

Search Result 65, Processing Time 0.026 seconds

Identification of Phytotoxins Produced by Drechslera portulacae, a Pathogen of Purslane(Portulaca oleracea) - II. Isolation of Zeaenol and Its Herbicidal Activity (쇠비름(Porturaca oleracea)의 병원균, Drechslera portulacae가 생산하는 식물독소의 구조 동정 - 제 2 보. Zeaenol의 단리 및 제초활성)

  • Kim, K.W.
    • Korean Journal of Weed Science
    • /
    • v.14 no.3
    • /
    • pp.192-198
    • /
    • 1994
  • Zeaenol isolated from the culture filtrate of a fungal weed pathogen Drechslera portulacae, which causes necrosis on the leaves and stem of purslane (Portulaca oleracea). Its structure was determined by single-crystal x-ray diffraction method together with assignments of $^1H$ and $^{13}C$-NMR experiments. Zeaenol inhibited root length of Echinochloa crus-galli and Abutilon avicennae by 22.8% and 54.8% at $3{\times}10^{-6}M$, respectively.

  • PDF

Reaction and Theoretical Study of the Coordination of an N2O-Donor Amino Alcoholic Ligand Toward Group 12 Metals Mixtures

  • Mardani, Zahra;Moeini, Keyvan;Kazemshoar-Duzduzani, Reza
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.160-165
    • /
    • 2019
  • A series of reactions between an amino alcoholic ligand, cis-2-((2-((2-hydroxyethyl)amino)ethyl)amino)cyclohexan-1-ol (HEAC), with the mixtures of group 12 metals including, $HgCl_2/CdCl_2$, $HgCl_2/CdI_2$, $ZnCl_2/CdCl_2$ and $ZnCl_2/CdCl_2/HgCl_2$ was experimentally and theoretically studied to determine the most stable product of these reactions. Furthermore, the Cambridge Structural Database (CSD) studies were done to evaluate the theoretical results. The products were characterized by elemental analysis, FT-IR, Raman, $^1H$ NMR spectroscopy and single-crystal X-ray diffraction. Based on these investigations a binuclear structure of cadmium, [$Cd_2(HEAC)_2({\mu}-Cl)_2Cl_2$] (1), is the most stable product that was formed in all studied reactions between HEAC and metals mixtures. In this structure, the cadmium atom has a $CdN_2O({\mu}-Cl)_2Cl$ environment and distorted octahedral geometry.

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Synthesis and Characterization of Ir(H)(CO)(PEt3})22-C60)

  • Lee, Chang-Yeon;Lee, Gae-Hang;Kang, Hong-Kyu;Park, Bo-Keun;Park, Joon-T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1958-1962
    • /
    • 2007
  • The title complex, Ir(H)(CO)(PEt3)2(η 2-C60) (2), has been prepared by the reaction of excess C60 (4 equiv) with a tetrairidium complex Ir4(CO)8(PEt3)4 (1) in refluxing chlorobenzene in 40% yield as green crystals. Compound 2 has been characterized by cyclic voltammetry (CV), spectroscopic methods (mass, IR, 1H and 31P NMR), and a single crystal X-ray diffraction study. The molecular structure reveals that the iridium atom of 2 is coordinated by two axial ligands of a hydrogen atom and a carbonyl group, and three equatorial ligands of two phosphorus atoms and an η 2-C60 moiety. The CV study exhibits three reversible one-electron redox waves for the successive reductions of 2, together with additional four redox waves due to free C60 reductions, which was formed by decomposition of 2 in the reduced states. The three reversible redox waves of 2 are shifted to more negative potentials by ca. 270 mV compared to free C60, reflecting both metal-to-C60 π-back-donation and the electron-donating nature of the two phosphorus ligands.

Synthesis of Alkylidyne Complexes of Br$(CO)_2(tmeda)M{\equiv}CC_{6}H_{4}Me$ (M = Cr, Mo, W). Crystal Structure of Br$(CO)_2(tmeda)M{\equiv}CC_{6}H_{4}Me$

  • Park, Joon T.;Cho, Jeong-Ju;Suh, Il-Hwan;Lee, Jin-Ho;Lim, Sung-Su;Ryu, Bo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.266-271
    • /
    • 1993
  • The reaction of $(CO_5$)M=C(OMe)Tol (M=Cr, Mo, W and $Tol=p-C_6H_4Me)$ and $BBr_3$ followed by treatment with tetramethylethylenediamine (TMEDA) yields a mixture of two diastereomers, trans, $cis-Br(CO)_2(tmeda)M{\equiv}$CTol [M=Cr(1a), Mo(2a), W(3a)] and cis, $trans-Br(CO)_2(tmeda)M{\equiv}$CTol [M=Cr(1b), Mo(2b), W(3b)], respectively. These compounds have been isolated as crystalline solids and characterized by spectroscopic (infrared, mass, $^1H$ and $^{13}C-NMR)$ data. The trans, cis-Br(CO)2(tmeda)Cr${\equiv}$CTol (1a), has been examine via a single crystal X-ray diffraction study : $BrCrO_2N_2C_{16}H_{23}$, Mr=407.27, triclinic, $P{\bar{1}},\;a=12.792(2),\;b=13.400(5),\;c= 11.645(4)\;{\AA},\;{\alpha}=101.26(2)^{\circ},\;{\beta}=103.04(2)^{\circ},\;{\gamma}=91.88(2)^{\circ},\;{\nu}=1907(1){\AA}^3,\;Z=2,\;{\rho}(calcd)=1.418\;gcm^{-3},\;{\lambda}(MoK{\alpha})=0.71069\;{\AA},\;{\mu}=26.25 cm^{-1},\;F(000)=831.97,\;T=295K,\;R=0.0977$ for 1332 significant reflections $[F_0>5{\sigma}(F_0)]$. There are two essentially equivalent molecules in the crystallographic asymmetric unit. Each molecule is octahedral with the bromide ligand trans to the alkylidyne carbon, the two cis-carbonyl ligands, and the bidentate TMEDA ligand.

Synthesis and Characterization of Tetranuclear Molybdenum(Ⅵ) Complexes with Butylamidoxime Derivatives (부틸아미드옥심 유도체의 몰리브덴(Ⅵ) 사핵 착물의 합성과 성질)

  • Roh, Soo-Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.552-558
    • /
    • 1995
  • The tetranuclear complexes, $X_2[M_{O4}O_12{R'C(NH_2)NO}_2](X= n-Bu_4N^+$, $R'=(CH_3)_2CH$, $CH_3CH_2CH_2$, $CH_3SCH_2$; $X=(CH_3)_2CHC(=NH_2)NH_2^+$, $R'=(CH_3)_2CH$; $X = CH_3CH_2CH_2C(=NH_2)NH_2^+$, $R'=CH_3_CH_2CH_2$; $X=CH_3SCH_2C(=NH_2)NH_2^+$, $R'=CH_3SCH_2)$ have been synthesized by the reactions of monomeric and polynuclear complexes with isobutyl-, butyl- and thiomethylacetamidoxime. The prepared complexes were identified by elemental analysis, infrared, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The structure of complex ${(CH_3)_2CHC(NH_2)_2}_2[M_{O4}O_{12}{(CH_3)_2CHC(NH_2)NO}_2]$ was determined by X-ray single crystal diffraction. Crystal data are follows: Monoclinic, $P2_{1/c}$, $a=10.168(3){\AA}$, $b=11.768(1){\AA}$, $c=13.557(1){\AA}$, ${\beta}=102.08(1)^{\circ}$, $V=1586.2(5){\AA}^3$, Z=2, final R=0.026 for 2951($F_0>3s(F_0)$). This complex is composed of a planar cyclic $[Mo_4({\mu}-O)_4]$ and two ${\mu}_4$-amidoximate.

  • PDF

X-ray and Spectroscopy Studies of Mercury (II) and Silver (I) Complexes of α-Ketostabilized Phosphorus Ylides (α-케토안정화된 일리드화 인의 수은(II) 및 은(I) 착물에 대한 X-선 및 분광학적 연구)

  • Karami, K.;Buyukgungor, O.;Dalvand, H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.38-45
    • /
    • 2011
  • The complexation behavior of the $\alpha$-ketostabilized phosphorus ylides $Ph_3P$=CHC(O) $C_6H_4-X$ (X=Br, Ph) towards the transition metal ions mercury (II) and Silver (I) was investigated. The mercury(II) complex {$HgX_2$ [Y]} 2 ($Y_1$=4-bromo benzoyl methylene triphenyl phosphorane; X=Cl(1), Br(2), I(3), $Y_2$=4-phenyl benzoyl methylene triphenyl phosphorane; X=Cl(4), Br(5), I(6)) have been prepared from the reaction of $Y_1$ and $Y_2$ with $HgX_2$ (X=Cl, Br, I) respectively. Silver complexes [$Ag(Y_2)_2]$ X(X=$BF_4$(7), OTf(8)) of the $\alpha$-keto-stabilized phosphorus ylides ($Y_2$) were obtained by reacting this ylide with AgX (X=$BF_4$, OTf) in $Me_2CO$. The crystal structure of complexes (1) and (4) was discussed. These reactions led to binuclear complexes C-coordination of ylide and trans-like structure of complexes $[Y_1HgCl_2]_2$. $CHCl_3$ (1) and $[Y_2HgCl_2]_2$ (4) is demonstrated by single crystal X-ray analyses. Not only all of complexes have been studied by IR, $^1H$ and $^{31}P$ NMR spectroscopy, but also complexes 1-3 have been characterized by $^{13}$CNMR.

Synthesis and Characterization of (THF)3 Li(NC)CU(C6H3-2,6-Mes2)and Br(THF)2 Mg(C6H3-2,6-Trip2) (Mes = C6H2-2,4,6-Me3; Trip = C6H2-2,4,6-i-Pr3): The Structures of a Monomeric Lower-Order Lithi

  • Hwang, Cheong-Soo;Power, Philip P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.605-609
    • /
    • 2003
  • The lower-order lithium organocyanocuprate compound, (THF)₃Li(NC)Cu($C_6$H₃-2,6-Mes₂) (1), and the bulky terphenyl Grignard reagent, Br(THF)₂Mg($C_6$H₃-2,6-Trip₂) (2), have been synthesized and structurally characterized both in the solid state by single crystal x-ray crystallography and in solution by multi-nuclear NMR and IR spectroscopy. The compound (1) was isolated as a monomeric contact ion-pair in which the C (organic ipso)-Cu-CN-Li atoms are coordinated linearly. The lithium has a tetrahedral geometry as a result of solvation by three THF molecules. The compound (1) is the first example of fully characterized monomeric lower order lithium organocyanocuprate. The bulky Grignard reagent (2) was also isolated as a monomer in which the magnesium, solvated by two THF molecules, has a distorted tetrahedral geometry. The crystals of (1) possess triclinic symmetry with the space group $P{\={1}}$, Z = 2, with a = 12.456(3) Å, b = 12.508(3) Å, c = 13.904(3) Å, α = 99.81°, β = 103.72(3)°, and γ = 119.44(3)°. The crystals (2) have a monoclinic symmetry of space group $P2_{1/C}$, Z = 4, with a = 13.071(3) Å, b = 14.967(3) Å, c = 22.070(4) Å, and β = 98.95(3)°.

Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins

  • Wang, Chaoming;Liu, Juan;Deng, Jianqiang;Wang, Jiazhen;Weng, Weizhao;Chu, Hongxia;Meng, Qingguo
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.14-23
    • /
    • 2020
  • Ginseng has been used as a popular herbal medicine in East Asia for at least two millennia. However, 20(R)-ginseng saponins, one class of important rare ginsenosides, are rare in natural products. 20(R)-ginseng saponins are generally prepared by chemical epimerization and microbial transformation from 20(S)-isomers. The C20 configuration of 20(R)-ginseng saponins are usually determined by 13C NMR and X-ray single-crystal diffraction. 20(R)-ginseng saponins have antitumor, antioxidative, antifatigue, neuroprotective, and osteoclastogenesis inhibitory effects, among others. Owing to the chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. In this study, the discovery, identification, chemical epimerization, microbial transformation, pharmacological activities, and metabolism of 20(R)-ginseng saponins are summarized.

Molecular Structure of PCP Pincer Complexes: Poisoning Catalyst on the Dehydrogenation of Alkanes (알칸의 탈수소화반응에서의 촉매독 화합물의 분자구조)

  • Lee Ji Hyun;Chun Sang Jin;Kwon Ki Hyeok;Lee Do Weon
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.43-53
    • /
    • 2005
  • The dihydrido P-C-P pincer complex, $IrH_2{C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (1), was successfully prepared from the reaction of the hydrochloride complex, $IrClH (C_6H_3-2,6-(CH_2PBu_2^t)_2}$, and super acid $(LiBEt_3H)$ under 1 atm of hydrogen in pentane solution at room temperature and followed by Heating at $130^{\circ}C$ in vacuo. Jensen recently found that the dihydrido P-C-P pincer complex 1 is a highly active homogeneous catalyst for the transfer dehydrogenation of alkanes with unusual longterm stability at temperatures as high as $200^{\circ}C$. The treatment of dihydrido complex 1 with nitrogen, water, carbon dioxide, and carbon monoxide in presence of tert-butylethylene (the) at room temperature in an appropriate solution gave the dinitrogen complex, $[Ir{C-6H_3-2,6-(CH_2PBu_2^t)_2}]_2({\mu}-N_2)$ (2), the hydrido hydroxyl complex, $IrH(OH){C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (3), the carbon dioxide complex, $Ir({\eta}^2-CO_2) {C_6H_3-2,6-(CH_2PBu_2^t)_2}$ (including the bicarbonate complex, $IrH({\kappa}^2-O_2COH){C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(4))$, and the carbonyl complex, $Ir(CO) {C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(5)$ (including the carboxyl complex, $IrH(C(O)OH) {C_6H_3-2,6-(CH_2PBu_2^t)_2}\;(6))$, in good yield, respectively. These P-C-P iridium complexes were isolated and characterized by $^1H,\;^{13}C,\;^{31}P\; NMR$, and IR spectroscopy. In addition, the complexes (1-6) were characterized by a single crystal X-ray crystallography. These complexes account for these small molecules' inhibition of dehydrogenation of alkanes catalyzed by the dihydrido complex 1.