• Title/Summary/Keyword: Single Vortex

Search Result 176, Processing Time 0.02 seconds

Unifying calculation of vortex-induced vibrations of overhead conductors

  • Leblond, Andre;Hardy, Claude
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.79-88
    • /
    • 2005
  • This paper deals with a unified way for calculating vortex-induced vibrations (Aeolian vibrations in transmission line parlance) of undamped single overhead conductors. The main objective of the paper is to identify reduced parameters which would unify the predicted vibration response to the largest possible extent. This is actually done by means of a simple mathematical transformation resulting, for a given terrain (associated to a given wind turbulence intensity), into a single, unified response curve that is applicable to any single multi-layered aluminium conductor. In order to further validate the above process, the predicted, unified response curve is compared with measured response curves drawn from tests run on a full-scale test line using several aluminium-conductor-steel-reinforced (ACSR), all-alloy-aluminium-conductor (AAAC) and aluminium-conductor-alloy-reinforced (ACAR) conductors strung at different tensions. On account of the expected scatter in the results from such field tests, the agreement is shown to be good. The final results are expressed by means of only four different curves pertaining to four different terrain characteristics. These curves may then be used to assess the vibration response of any undamped single, multi-layer aluminium conductor of any diameter, strung at any practical tension.

Vortex dynamics in YBa$_2Cu_3O_7$ single crystals measured by micro Hall-probe array (Micro Hall probe array를 이용한 YBa$_2Cu_3O_7$ 단결정 내부의 자속 운동 측정)

  • Shim, Seong-Yeop;Hwang, Hyeon-Guk;Lee, Chang-Woo;Lee, Tae-Won;Kim, Dong-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.189-195
    • /
    • 1999
  • We have studied the vortex dynamics in YBa$_2Cu_3O_7$ single crystals with columnar defects using micro Hall-probe array. The Hall-probe array technique allowed a simultaneous measurement of the time and spatial dependence of the vortex density so that more detailed information on flux dynamics could be obtained. We found that field profiles inside sample were similar to the Bean's critical state model from the magnetic hysteresis measurement. Normalized relaxation rates were maximum near the center and decreased toward the edge if applied field H$_{app}$ is greater than the penetration field H. But applied magnetic field H$_{app}$ is less than H, relaxation rates were minimum near the center and increased toward edge. We found that glassy exponent ${\mu}$ has the value of ${\sim}$ 1 whose corresponding vortex motion is half-loop excitation. However, single vortex creep, ${\mu}$ ${\sim}$ 1/7, was also found at 30 K and H$_{app}$ ${\cong}$ H'. Calculation of activation energy, U, was possible from direct analysis of the local relaxation data using the basic diffusion equation. From these results, we found that U increases logarithmically with time and U around center was lower than that at the edge.

  • PDF

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Votex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.52-60
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. Results show that the fuel and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF

Numerical Analysis on the Flow Uniformity in a Pump Sump Model with Multi Pump Intake (다중 흡수정을 갖는 펌프장 모델의 유동균일성 해석)

  • Choi, Jong-Woong;Choi, Young-Do;Lim, Woo-Seop;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.14-22
    • /
    • 2009
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite basin with no close walls or floors and with no stray currents. Therefore, flow into the pump intake is with no vortices or swirling. However, pump station designers relying on these curves to define the operating conditions for the pump selected sometimes meet the reductions of capacity and efficiency, as well as the increase of vibration and additional noise, which were caused by air-entered flow in the pump station. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump of pump station model. Multi-intake sump model with anti-submerged vortex device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the vortex generation in the pump station accurately. The analysed results by CFD show that the vortex structure and effect of anti-submerged vortex device are different at each pump intake channel.

Steady Flow Characteristics of Four-Valve Cylinder Heads (실린더헤드 형상에 따른 정상유동 특성)

  • 배충식;정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.197-205
    • /
    • 1996
  • The flow characteristics of five different 4-valve cylinder heads were investigated in a steady flow rig using laser-Doppler velocimetry. The tumble flow of each head with pentroof combustion chamber was quantified by nondimensional tumble number using a tumble adaptor. The formation of tumbling vortex was examined in an optical single-cylinder engine which has windows for in-cylinder LDV measurements. Tumble vortex ratio was estimated from the tumble flow measurement. The four-valve cylinder heads with pent-roof combustion chamber showed the tumble vortex from the intake process, which was investigated in the steady flow test. The tumble adaptor which converts the tumble into swirl flow was found to be feasible in predicting the tumble flow in the real engine. The tumble strength in the steady flow test coincides with that in the real engine experiment within 15%. It was found that the steady flow test on the four-valve cylinder heads provides the tip for a better design of cylinder head.

  • PDF

Horseshoe Vortices variation around a Circular Cylinder with Upstream Cavity (상류 캐비티로 인한 실린더 주위의 유동장 변화)

  • Kang, Kyung-Jun;Kim, Dong-Beum;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2625-2630
    • /
    • 2008
  • Horseshoe vortices are formed at the junction of an object immersed in fluid-flow and endwall plate as a result of three-dimensional boundary layer separation. This study shows preliminary results of the kinematics of such horseshoe vortices around a circular cylinder with a cavity (slot) placed upstream to disturb the primary separation line. Through the cavity, no mass flow addition (blowing) or reduction (suction) is applied. The upstream cavity weakens the adverse pressure gradient before the cavity. With the upstream cavity, a single vortex is found to form immediately upstream of the cylinder whereas a typical two vortex system is observed in the absence of the cavity. Furthermore, the strength of the single vortex tends to be reduced, resulting from the interaction with the separated flow convecting directly towards the leading edge of the cylinder.

  • PDF

Experimental studies on possible vortex shedding in a suspension bridge - Part I - Structural dynamic characteristics and analysis model

  • Law, S.S.;Yang, Q.S.;Fang, Y.L.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.543-554
    • /
    • 2007
  • The suspension bridge is situated in an area of complex topography with both open sea and overland turbulence characteristics, and it is subject to frequent typhoon occurrences. This paper investigates experimentally the possible vortex shedding events of the structure under high wind and typhoon conditions. A single-degree-of-freedom model for the vibration of a unit bridge deck section is adopted to determine the amplitude of vibration and to estimate the parameters related to the lifting force in a vortex shedding event. The results of the studies are presented in a companion paper (Law, et al. 2007). In this paper, statistical analysis on the measured responses of the bridge deck shows that the vibration response at the first torsional mode of the structure has a significant increase at and beyond the critical wind speed for vortex shedding as noted in the wind tunnel tests on a section model of the structure.

Flame Behaviors of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화염거동)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.57-63
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame behaviors of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

  • PDF

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.