• 제목/요약/키워드: Single Spherical Particle

검색결과 54건 처리시간 0.094초

나노입자 첨가를 통한 우레탄수지의 캐비테이션 저항 향상 (Addition of nano particle to increase the cavitation resistance of urethane)

  • 이익수;김낙주;박대원
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.679-687
    • /
    • 2014
  • 본 연구에서는 캐비테이션에 의한 부식에 강한 도료를 개발하기 위하여 고탄성의 우레탄 수지에 내마모 성능을 향상시키기 위한 첨가제로서 Multi wall과 Single wall type의 Carbon nano tube(CNT)와 Spherical과 Fiber type의 Graphite 나노 입자를 첨가하여 물성과 캐비테이션에 대한 저항성, 작업성 등을 비교 평가하였다. 나노 입자로서 Graphite에서는 캐비테이션 저항성($t_{50}$)이 Spherical type($t_{50}$ 182min)보다는 Fiber type($t_{50}$ 292min)이 높은 캐비테이션 저항성을 갖는 것으로 관찰되었다. 또한 CNT에서는 Single wall type의 캐비테이션 저항성($t_{50}$ 286min)이 Multi wall보다는 더 높은 것으로 관찰되었다. 나노 입자중에서 가격 및 캐비테이션 저항성을 감안하면 가장 최적의 나노 입자는 Fiber type의 Graphite로 관찰되었다. 도료의 작업성 평가에서 수동 작업에 의해 제작된 표면은 매끈한 표면을 가지고 있으나 Spray 작업에 의해 제작된 표면은 표면이 균일하지 않으며 Spray시 발생된 Dust가 표면에 고착된 형태로 관찰되었다.

항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산 (Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements)

  • 엄준식
    • 대기
    • /
    • 제30권1호
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.

습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구 (Formation Reaction of Mn-Zn Ferrite by Wet Process)

  • 이경희;이병하;허원도;황우연
    • 한국세라믹학회지
    • /
    • 제30권1호
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF

Shape Dependent Coercivity Simulation of a Spherical Barium Ferrite (S-BaFe) Particle with Uniaxial Anisotropy

  • Abo, Gavin S.;Hong, Yang-Ki;Jalli, Jeevan;Lee, Jae-Jin;Park, Ji-Hoon;Bae, Seok;Kim, Seong-Gon;Choi, Byoung-Chul;Tanaka, Terumitsu
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.1-5
    • /
    • 2012
  • The coercivity of a single 27 nm-spherical barium ferrite (S-BaFe) particle was simulated using three models: 1) Gibbs free energy (GFE), 2) Landau-Lifshitz-Gilbert (LLG), and 3) Stoner-Wohlfarth (S-W). Spherically and hexagonally shaped particles were used in the GFE and LLG simulations to investigate coercivity with the different shape anisotropies. The effect of shape was not included in the S-W model. It was found that the models using a spherical shape resulted in a coercivity higher than the models using the hexagonal shape with both shapes having the same diameter. The coercivity estimated with the S-W model was approximately the same as that for the spherical-shape models, which indicates that spherical shape has no significant effect on the particle's coercivity at nanoscale.

연료전지의 수소저장용 합금에 대한 수소확산반응의 속도론적 해석 (Kinetic Parameter Analysis of Hydrogen Diffusion Reaction for Hydrogen Storage Alloy of Fuel Cell System)

  • 김호성
    • 조명전기설비학회논문지
    • /
    • 제20권2호
    • /
    • pp.45-49
    • /
    • 2006
  • 본 논문은 마이크로 전극 시스템에 의하여 연료전지 및 Ni-MH 전지로의 응용을 가정한 $AB_5$계 수소저장합금인 $MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$의 단일 입자에 대하여 전기화학적인 평가를 수행하였다. 즉 Carbon fiber 마이크로 전극을 합금 입자 한개 위에 전기적인 접촉을 이루도록 조정하고, 합금 입자 내에서 수소원자의 겉보기 화학적 확산계수를 계산하기 위하여 Potential-Step 실험을 실시하였다. 여기에서 사용되는 합금입자는 치밀하고 전도성이 있는 구형이므로 데이터 해석을 위해 구형확산 모델을 적용하였다. 실험결과로서 겉보기 확산계수($D_{app}$)는 수소 흡장 및 방출되는 전 과정에서 $10^{-9}$$10^{-10}[cm^2/s]$ 수준인 것으로 확인되었다. 마이크로 전극 측정 시스템에 의한 단일 입자의 전기화학적 평가는 기존의 Composite Film 전극에 비해 수소저장합금에 대해 보다 상세하고 정확한 정보를 쉽게 얻을 수 있었다.

Experimental study on single- and two-phase flow behaviors within porous particle beds

  • Jong Seok Oh;Sang Mo An;Hwan Yeol Kim;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1105-1117
    • /
    • 2023
  • In this study, the pressure drop behavior of single- and two-phase flows of air and water through the porous beds filled with uniform and non-uniform sized spherical particles was examined. The pressure drop data in the single-phase flow experiments for the uniform particle beds agreed well with the original Ergun correlation. The results from the two-phase flow experiments were analyzed using numerical results based on three types of previous models. In the experiments for the uniform particle beds, the data on the two-phase pressure drop clearly showed the effect of the flow regime transition with a variation in the gas flow rate under stagnant liquid condition. The numerical analyses indicated that the predictability of the previous models for the experimental data relied mainly on the sub-models of the flow regime transitions and interfacial drag. In the experiments for the non-uniform particle beds, the two-phase pressure loss could be predicted well with numerical calculations based on the effective particle diameter. However, the previous models failed to accurately predict the counter-current flooding limit observed in the experiments. Finally, we propose a relation of falling liquid velocity into the particle bed by gravity to appropriately simulate the CCFL phenomenon.

입상여과에서 입자물질의 탈리 (Particle Detachment in Granular Media Filtration)

  • 김진근
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.673-679
    • /
    • 2004
  • Particle breakthrough can occur by either the breakoff of previously captured particles (or flocs) or the direct passage of some influent particles through the filter. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5, nearly pure $SiO_2$) and three different destabilization methods (pH control, alum and polymer destabilization) were utilized. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. To assess the possibility of particle detachment during the normal filtration, a hydraulic shock load (20% increase of flow rate) was applied after 4 hours of normal filtration. The magnitude of particle detachment was proportional to the particle size for non-Brownian particles. At the same time, less favorable particles, i.e., particles with larger surface charge, were easily detached during the hydraulic shock load. Therefore, proper particle destabilization before filtration is crucial for maximum particle removal as well as minimum particle breakthrough.

입자와 주위유체와의 상호작용에 관한 연구 (A Study on the Interaction between Particles and Surrounding Fluid)

  • 최해만
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.108-115
    • /
    • 2002
  • The fundamental mechanism of a dispersed two-phase flow was investigated. Experiments were carried out to understand how the particles behaves under the influence of the particle size, shape, metamorphoses (bubble) and buoyancy of a single particle which is ascending from the standstill water. Two CCD cameras were employed for image processing of the behavior of the particles and the surrounding flow, which was interpreted with the technique of correlation PIV (Particle Image Velocimetry) and PTV (Particle Tracking Veloci- metry), respectively The experimental results showed that the large density difference bet- ween a particle and water caused high relative velocity and induced zigzag motion of the particle. Furthermore, the turbulence intensity of a bubble was about twice the case of the spherical solid particle of similar diameter.

The Development of Mono-sized Micro Silicon Particles for Spherical Solar Cells by Pulsated Orifice Ejection Method

  • Dong, Wei;Masuda, Satoshi;Takagi, Kenta;Kawasaki, Akira
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.426-427
    • /
    • 2006
  • Mono-sized silicon particles were effectively fabricated by a novel way named pulsated orifice ejection method (POEM). The particles are with very narrow particles size distribution and very small standard deviation of mean particle size. There are two different types spherical silicon particles were found. One consists of many grains mainly in random boundaries. The other consists of two or three grains with only twin orientation relationships, even single crystal in cross-section was also found within this type of spherical silicon particles.

  • PDF

Hough 변환을 이용한 입경 측정을 위한 영상처리 알고리즘의 개선 (Improvement of Image Processing Algorithm for Particle Size Measurement Using Hough Transform)

  • 김유동;이상용
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.35-43
    • /
    • 2001
  • Previous studies on image processing techniques for panicle size measurement usually have focused on a single panicle or weakly overlapped particles. In the present work, the image processing algorithm for particle size measurement has been improved to process heavily-overlapped spherical-particle images. The algorithm consists of two steps; detection of boundaries which separate the images of the overlapped panicles from the background and the panicle identification process. For the first step, Sobel operator (using gray-level gradient) and the thinning process was adopted, and compared with the gray-level thresholding method that has been widely adopted. In the second, Hough transform was used. Hough transform is the detection algorithm of parametric curves such as straight lines or circles which can be described by several parameters. To reduce the measurement error, the process of finding the true center was added. The improved algorithm was tested by processing an image frame which contains heavily overlapped spherical panicles. The results showed that both the performances of detecting the overlapped images and separating the panicle from them were improved.

  • PDF