• Title/Summary/Keyword: Single Species Unreacted Model

Search Result 3, Processing Time 0.016 seconds

A CFD Study for Rocket Exhaust Flow using Single Species, Unreacted Flow Model (단일화학종 비반응 해석 모델을 사용한 로켓 연소후류 유동해석 연구)

  • Kang, Sun-Il;Huh, Hwan-Il
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.126-134
    • /
    • 2012
  • The Single Species, Unreacted Flow Model which is effectively applicable on the computational analysis of rocket exhaust flow is introduced in this paper. The basic concept of this model had been originated from chemically frozen analysis of hot air but it was complemented by compensating molecular weight and specific heat which was obtained CEA code analysis of exhaust plume. Comparing single species, unreacted model with the finite chemistry model, unreacted model can reduce calculation time to 1/5 while it makes similar simulation results.

A Computational Study on Cooling Analysis of the Flame Deflector for the 75 tonf Class Propulsion Test Facility (75톤급 추진기관 시험설비 화염유도로 냉각해석에 관한 수치적 연구)

  • Moon, Seong-Mok;Cho, Nam-Kyung;Kim, Seong-Lyong;Jun, Sung-Bok;Lee, Kyoung-Hoon;Kim, Dong-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.55-64
    • /
    • 2015
  • In this study, a 3-D flame cooling analysis is conducted to examine thermal safety for the flame deflector of the 75 tonf class propulsion test facility, and the safe discharge of the exhaust gas is assessed by using numerical results. The Mixture multiphase model is adopted for the simulation of heat transfer and phase exchange process between flame and cooling water, and the computational study using the single species unreacted model for the exhaust plume is carried out for the flame cooling. Numerical analysis predicts maximum temperature on the flame deflector wall for different water flow rates, and evaluates the safe minimum flow rate of water corresponding to the fire-resistant temperature for concrete.

A Study for Rocket Exhaust Flow Cooling due to the Central Spray Type Water Injection (중앙 분사 방식 냉각수 투입에 의한 로켓 연소 후류 냉각에 관한 연구)

  • Kang, Sun-Il;Nam, Jung-Won;Huh, Hwan-Il
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 2013
  • In this study, the cooling of rocket exhaust plume by sprayed water inside plume were investigated as varying of sprayed water mass, location, and method using computational fluid analysis. For Analyze rocket exhaust plume, a single species unreacted analysis model based on the chemically frozen analysis was used and the discrete particle model which was a kind of Euler-Lagrangian analysis model was used for simulate sprayed water inside plume. It was confirmed that the temperature of plume was reduced without cooling when water mass was two times of plume mass through analysis results.