• Title/Summary/Keyword: Single Scattering albedo

Search Result 35, Processing Time 0.026 seconds

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

A Study on the Characteristic and AOD Variation according to Aerosol Types Using AERONET Sunphotometer Data in Korea (AERONET 선포토미터 자료를 이용한 국내 에어로졸 유형별 특성과 광학적 두께 변화 연구)

  • Joo, Sohee;Dehkhoda, Naghmeh;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.93-101
    • /
    • 2020
  • For the first time in Korea, aerosol type was separated as PD (Pure dust), DDM (Dust Dominant Mixed), PDM (Pollution Dominant Mixed), NA (Non-Absorbing), WA (Weakly Absorbing), MA (Moderately Absorbing), and SA (Strongly Absorbing) using depolarization ratio and single-scattering albedo based on AERONET sunphotometer data. Then, seasonal and annual occurrence frequency and AOD variation are analyzed. The proportion of pollution aerosols (NA, WA, MA, SA combined) was 58.9, 46.2, 59.5, and 67.1% at Anmyeon, Gosan, Gwangju, Seoul, respectively, with Seoul being the highest and the lowest at Gosan. Annual rate changestended to increase NA and decrease PD and DDM. The AOD by type showed the highest NA at all sites. In addition, the ratio of NA and AOD continued to increase.

Deduction of Aerosol Composition and Absorption factors using AERONET sun/sky radiometer (AERONET 선포토미터 데이터를 이용한 에어로졸 조성 및 광흡수 특성 인자 도출)

  • Noh, Youngmin;Lee, Chulkyu;Choi, Sungchul
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.407-413
    • /
    • 2013
  • The Modified Aerosol Factor (MAF) derived from spectral Single-Scattering Albedo (SSA) values was created to express the light absorption properties according to aerosol types. As a factor of the MAF, slope of a linear regression line for SSA at four wavelengths shows positive value for dust aerosol, while negative values were found for mixing with other types of aerosol. The negative values were shown by anthropogenic and smoke aerosols. The modified SSA at 1020 nm was also calculated. MAF was calculated by summing the slope and modified SSA. MAF was -1.0 for the anthropogenic and smoke aerosol and 1.5 for the dust particles. Those values were decreased by increasing light absorption property.

Columnar Aerosol Properties at Yongin According to Transport Paths of Back Trajectories (역궤적 이동경로별 용인지역의 컬럼에어로졸 특성)

  • Park, Jisoo;Choi, Yongjoo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • Columnar aerosol properties retrieved from solar radiation were investigated at the Yongin (YGN) SKYNET site over seven years from October 2008 to October 2015. Hourly averages were calculated when the data were available, and back trajectories were calculated to examine the effects of regional transport. Data recovery rate was low at 6.6%, primarily because solar radiation was measured only under daytime clear-sky conditions. Mean values of the fine-mode volume fraction (FMVF) as well as its seasonal variation were similar to those of $PM_{2.5}/PM_{10}$ although the coarse-mode fraction of column aerosols tended to be slightly larger. The values of single scattering albedo (SSA) and FMVF were lower in spring due to the effects of mineral dust, and higher in summer due to secondarily-formed inorganic ions. Back trajectories were grouped into five clusters according to the directions of transport paths. Aerosol loading was highest for Cluster 2 from the northwest, but SSA and FMVF were not particularly high or low because aerosols were composed of various materials with different properties. Aerosol loading was lowest for Cluster 5 from the Pacific Ocean passing through the south end of Japan, whose SSA and FMVF were highest as secondarily-formed inorganic ions were mixed.

Model Simulations for the Dust-Scattered Far-Ultraviolet in the Orion-Eridanus Superbubble

  • Jo, Young-Soo;Min, Kyoung-Wook;Lim, Tae-Ho;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.73.1-73.1
    • /
    • 2012
  • We present the results of dust scattering simulations carried out for the Orion Eridanus Superbubble region by comparing them with observations made in the far-ultraviolet. The albedo and the phase function asymmetry factor (g-factor) of interstellar grains were estimated as well as the distance and thickness of the dust layers. The results are: 0.39-0.45 for the albedo and 0.25-0.65 for the g-factor, in good agreement with previous determinations and theoretical predictions. The distance of the assumed single dust layer, modeled for the Orion Molecular Cloud Complex, was estimated to be -110 pc and the thickness ranged from -130 at the core to -50 pc at the boundary for the region of the present interest, implying that the dust cloud is located in front of the Superbubble. The simulation result also indicates that a thin (-10 pc) dust shell surrounds the inner X-ray cavities of hot gas at a distance of -70-90 pc.

  • PDF

Aerosol Indirect Effect Studies derived from the Ground-based Remote Sensings (지상원격탐사를 이용한 에어러솔 간접효과 연구)

  • Kim Byung-Gon;Kwon Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.235-247
    • /
    • 2006
  • Aerosol indirect radiative forcing of climate change is considered the most uncertain forcing of climate change over the industrial period, despite numerous studies demonstrating such modification of cloud properties and several studies quantifying resulting changes in shortwave radiative fluxes. Detection of this effect is made difficult by the large inherent variability in cloud liquid water path (LWP): the dominant controlling influence of LWP on optical depth and albedo masks any aerosol influences. Here we have used ground-based remote sensing of cloud optical depth (${\tau}_c$) by narrowband radiometry and LWP by microwave radiometry to determine the dependence of optical depth on LWP, thereby permitting examination of aerosol influence. The method is limited to complete overcast conditions with liquid-phase single layer clouds, as determined mainly by millimeter wave cloud radar. The results demonstrate substantial (factor of 2) day-to-day variation in cloud drop effective radius at the ARM Southern Great Plains site that is weakly associated with variation in aerosol loading as characterized by light-scattering coefficient at the surface. The substantial scatter suggests the importance of meteorological influences on cloud drop size as well, which should be analyzed in the further intensive studies. Meanwhile, it is notable that the decrease in cloud drop effective radius results in marked increase in cloud albedo.

Simulation study of dust-scattered Far-Ultraviolet emission in the Orion-Eridanus Superbubble

  • Jo, Young-Soo;Min, Kyoung-Wook;Lim, Tae-Ho;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.98.1-98.1
    • /
    • 2012
  • We present the results of dust scattering simulations carried out for the Orion-Eridanus Superbubble region by comparing them with observations made in the far-ultraviolet. The albedo and the phase function asymmetry factor (g-factor) of interstellar grains were estimated, as were the distance and thickness of the dust layers. The results are as follows: [0.43]_(-0.04)^(+0.02) for the albedo and [0.43]_(-0.2)^(+0.2) for the g-factor, in good agreement with previous determinations and theoretical predictions. The distance of the assumed single dust layer, modeled for the Orion Molecular Cloud Complex, was estimated to be ~110 pc, and the thickness ranged from ~130 at the core to ~50 pc at the boundary for the region of present interest, implying that the dust cloud is located in front of the superbubble. The simulation result also indicates that a thin (~10 pc) dust shell surrounds the inner X-ray cavities of hot gas at a distance of ~70-90 pc.

  • PDF

Simulation for Propagation Behavior of a Gaussian Beam in Water Medium by Monte Carlo Method

  • Kim, Jae-Ihn;Jeong, Woong-Ji;Cho, Joon-Yong;Jo, Min-Sik;Kim, Hyung-Rok
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.444-448
    • /
    • 2015
  • We describe the radiative transfer of a Gaussian beam in a water medium using the Monte Carlo method offering basic propagation behaviors. The simulation shows how the energy of the initial Gaussian beam is redistributed as it propagates in coastal water, and also depicts the dependence of the propagation behavior on inherent optical properties of the ocean water such as the single scattering albedo as well as on laser beam parameters, e.g. the M squared. Our results may widen the applicability of LIDARs by providing a couple of design considerations for a bathymetric LIDAR.

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.

Analysis of Vertical Profiles and Optical Characteristics of the Asian Dust Using Ground-based Measurements (지상관측장비를 이용하여 관측한 봄철 황사의 연직분포와 광학적 특성 분석)

  • Lee, Byung-Il;Yoon, Soon-Chang;Kim, Yoonjae
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.287-297
    • /
    • 2008
  • The vertical profiles and optical properties of Asian dust are investigated using ground-based measurements from 1998 to 2002. Vertical profiles of aerosol extinction coefficient are evaluated using MPL (Micro Pulse Lidar) data. Optical parameters such as aerosol optical thickness ($\tau$), ${\AA}ngstr\ddot{o}m$ exponent ($\alpha$), single scattering albedo ($\omega$), refractive index, and volume size distribution are analyzed with sun/sky radiometer data for the same period. We can separate aerosol vertical profiles into three categories. First category named as 'Asian dust case', which aerosol extinction coefficient is larger than $0.15km^{-1}$ and dust layer exists from surface up to 3-4km. Second category named as 'Elevated aerosol case', which aerosol layer exists between 2 and 6km with 1-2.5km thickness, and extinction coefficient is smaller than $0.15km^{-1}$. Third category named as 'Clear sky case', which aerosol extinction coefficient appears smaller than $0.15km^{-1}$. and shows that diurnal variation of background aerosol in urban area. While optical parameters for first category indicate that $\tau$ and $\alpha$ are $0.63{\pm}0.14$, $0.48{\pm}0.19$, respectively. Also, aerosol volume concentration is increased for range of 1 and $4{\mu}m$, in coarse mode. Optical parameters for second category can be separated into two different types. Optical properties of first type are very close to Asian dust cases. Also, dust reports of source region and backward trajectory analyses assure that these type is much related with Asian dust event. However, optical properties of the other type are similar to those of urban aerosol. For clear sky case, $\tau$ is relatively smaller and $\alpha$ is larger compare with other cases. Each case shows distinct characteristics in aerosol optical parameters.