• 제목/요약/키워드: Single Pile

검색결과 237건 처리시간 0.024초

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

Physical Modeling of Soil-Structure Systems Response to Earthquake Loading

  • Abdoun, Tarek;Gonzalez, Lenart
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.43-51
    • /
    • 2007
  • Liquefaction-induced lateral spreading continues to be a major cause of damage to deep foundations. Currently there is a huge uncertainty associated with the maximum lateral pressures and forces applied by the liquefied soil to deep foundations. Furthermore, recent centrifuge and is shaking table tests of pile foundations indicate that the permeability of the liquefied sand is an extremely important and poorly understood factor. This article presents experimental results and analysis of one of the centrifuge tests that were conducted at the 150 g-ton RPI centrifuge to investigate the effect of soil permeability in the response of single piles and pile groups to lateral spreading.

역해석기법에 의한 기존의 p-y곡선 적용성에 관한 고찰 (Research on the Applicability of Conventional p-y curve for Lateral Behavior of Pile Foundation based on Inverse Analysis)

  • 김현욱;고재신;김남호;김연정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.390-400
    • /
    • 2010
  • BNWF(Beam on Nonlinear Winkler Foundation) method has long been adopted for lateral behavior analysis of pile foundation and widely recognized for its simplicity and accuracy up until now. However, due to lateral load tests which were done in limited conditions and theory-based input Parameter estimation, the applicbility of p-y curve has not been fully examined. Accordingly, we researched on the applicability of conventional input parameter estimation and the p-y curve to be determined by the estimation through inverse analysis based on lateral load tests.

  • PDF

바이모달 트램 운행을 위한 도심지 고가구조물 기초형식 개발 (Development of Foundation of Urban Overpass for Bimodal Tram System)

  • 강태식;배을호;박영곤;윤희택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.194-198
    • /
    • 2008
  • The necessities of development of foundation having minimized occupying area and construction time are required for overpass in the downtown area by which bimodal tram will pass a crossway. We are studying a single column drilled pier foundation which is continuous from pier to pile foundation. Due to the increased resisting moment by reinforced steel which is ranged from the upper part of pile to lower part of column above ground, it can be possible to make a smaller pile-section and lessen the bar reinforcing. And for the excavation work is possible with smaller equipment, this foundation has a improved constructability and economical efficiency. This foundation needs smaller amount of concrete and has a small self-weight. It has an effect on improving resistance against earthquake due to improved ductility in addition to improved rigidity by interaction between concrete and steel.

  • PDF

변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성 (Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation)

  • 박병수
    • 한국항해항만학회지
    • /
    • 제30권8호
    • /
    • pp.711-719
    • /
    • 2006
  • 본 연구는 변위억제형 Sheet pile 이 설치된 SCP복합지반의 지지력 특성에 대한 연구로서 원심모형실험과 수치해석을 통하여 SCP 복합지반의 하중-침하 관계, 응력분담특성, 최종함수비 등의 변화에 대해 알아보았다. SCP를 기초폭의 2배로 개량한 조건과 Sheet pile를 기초 한쪽 모서리에 설치한 경우, Sheet pile를 기초 양쪽 모서리에 설치한 경우 3가지에 대하여 연직하중재하 실험을 실시하였다. 한편, 원심모형실험 결과를 모사하기 위하여 상용 유한요소 프로그램인 CRISP을 이용하였으며 수치해석시 모래다짐말뚝은 탄소성모델로 점토지반은 한계평형 상태에 기초한 수정 Cam-clay 모델을 사용하였다. 원심모형실험결과 Sheet pile이 기초파괴활동을 억지하여 항복하중강도가 증가하였으며 Sheet pile 설치에 따른 응력분담비는 $2{\sim}4$의 값을 나타내었다. 또한 수치해석 결과 Sheet pile설치에 따라 지반융기량이 $20{\sim}30%$감소하였고 수평변위는 $28{\sim}43%$ 감소효과를 나타내었다.

조밀한 사질토지반에서 경사로 설치된 그룹 마이크로파일의 인발지지력 평가방법 (Evaluation Method for Uplift Load-carrying Capacity of Inclined Group Micropiles in Dense Sand)

  • 경두현;김가람;김인철;이준환
    • 한국지반공학회논문집
    • /
    • 제33권1호
    • /
    • pp.67-77
    • /
    • 2017
  • 본 연구에서는 단일 마이크로파일의 인발재하시험과 그룹 마이크로파일 인발재하시험 결과를 토대로 마이크로파일의 설치각도와 설치간격에 따른 인발지지특성을 확인하였다. 또한 FHWA(2005)의 방법과 Madhav(1987)의 방법을 토대로 지지력평가방법을 제안하고, 시험결과와 비교하여 그 적정성을 검토하였다. 시험결과, 단일 및 그룹마이크로파일의 인발지지력이 설치각도 30도까지 증가하는 것으로 나타났으며, 설치간격이 증가함에 따라 그 값이 다소 증가되는 것으로 나타났다. 제안된 FHWA(2005)의 방법의 경우, 수정된 방법을 통한 예측 값이 설치각도 15도의 5D조건까지 유사한 것으로 나타났다. 반면, 제안된 Madhav(1987)의 방법의 경우에는 모든 설치조건에서의 측정값과 수정된 방법을 통한 예측 값이 비교적 유사한 것으로 나타났다.

파랑에 의한 이중 파일 주변부 국부세굴 특성 분석 (Characteristics of Local Scour Around the Double Pile in Waves)

  • 오현식;이호진
    • 한국해안·해양공학회논문집
    • /
    • 제34권5호
    • /
    • pp.169-175
    • /
    • 2022
  • 강 하구나 천해역 등 파랑에 의해 영향을 받는 흐름장에서의 세굴은 한 방향 흐름에서의 세굴에 비해 예측이 어렵다. 해저 교량과 같은 원형 파일 주변부에서의 세굴 예측에 있어서 주요 관심사는 최대 세굴의 깊이와 발생 지점이다. 인접한 원형 파일이 2개 이상인 경우 파일 간의 간격과 정렬 방식에 따라 최대 세굴이 발생하는 위치 및 깊이는 단일 파일일 경우와 많은 차이를 나타낸다. 본 논문은 흐름의 크기를 나타내는 무차원 변수로서 KC 수를 산정하고 파일 간격과 흐름의 크기에 따른 상관성을 분석하였다.

Performance of laterally loaded piles considering soil and interface parameters

  • Fatahi, Behzad;Basack, Sudip;Ryan, Patrick;Zhou, Wan-Huan;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.495-524
    • /
    • 2014
  • To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model.

A simple approach for quality evaluation of non-slender, cast-in-place piles

  • Zhang, Ray Ruichong
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.1-17
    • /
    • 2008
  • This study proposes a conceptual framework of in-situ vibration tests and analyses for quality appraisal of non-slender, cast-in-place piles with irregular cross-section configuration. It evaluates a frequency index from vibration recordings to a series of impulse loadings that is related to total soil-resistance forces around a pile, so as to assess if the pile achieves the design requirement in terms of bearing capacity. In particular, in-situ pile-vibration tests in sequential are carried out, in which dropping a weight from different heights generates series impulse loadings with low-to-high amplitudes. The high-amplitude impulse is designed in way that the load will generate equivalent static load that is equal to or larger than the designed bearing capacity of the pile. This study then uses empirical mode decomposition and Hilbert spectral analysis for processing the nonstationary, short-period recordings, so as to single out with accuracy the frequency index. Comparison of the frequency indices identified from the recordings to the series loadings with the design-based one would tell if the total soil resistance force remains linear or nonlinear and subsequently for the quality appraisal of the pile. As an example, this study investigates six data sets collected from the in-situ tests of two piles in Taipu water pump project, Jiangshu Province of China. It concludes that the two piles have the actual axial load capacity higher than the designed bearing capacity. The true bearing capacity of the piles under investigation can be estimated with accuracy if the amplitude of impact loadings is further increased and the analyses are calibrated with the static testing results.

Numerical modelling of a pile-supported embankment using variable inertia piles

  • Dia, Daniel;Grippon, Jerome
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.245-253
    • /
    • 2017
  • The increasing lack of good quality soils allowing the development of roadway, motorway, or railway networks, as well as large scale industrial facilities, necessitates the use of reinforcement techniques. Their aim is the improvement of the global performance of compressible soils, both in terms of settlement reduction and increase of the load bearing capacity. Among the various available techniques, the improvement of soils by incorporating vertical stiff piles appears to be a particularly appropriate solution, since it is easy to implement and does not require any substitution of significant soft soil volumes. The technique consists in driving a group of regularly spaced piles through a soft soil layer down to an underlying competent substratum. The surface load being thus transferred to this substratum by means of those reinforcing piles, which illustrates the case of a piled embankment. The differential settlements at the base of the embankment between the soft soil and the stiff piles lead to an "arching effect" in the embankment due to shearing mechanisms. This effect, which can be accentuated by the use of large pile caps, allows partial load transfer onto the pile, as well as surface settlement reduction, thus ensuring that the surface structure works properly. A technique for producing rigid piles has been developed to achieve in a single operation a rigid circular pile associated with a cone shaped head reversed on the place of a rigid circular pile. This technique has been used with success in a pile-supported road near Bourgoin-Jallieu (France). In this article, a numerical study based on this real case is proposed to highlight the functioning mode of this new technique in the case of industrial slabs.