• Title/Summary/Keyword: Single Pile

Search Result 235, Processing Time 0.025 seconds

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

Evaluation of Dynamic p-y Curves of Group Piles Using Centrifuge Model Tests (원심모형실험을 이용한 무리말뚝의 동적 p-y 곡선 산정)

  • Nguyen, Bao Ngoc;Tran, Nghiem Xuan;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.53-63
    • /
    • 2018
  • Dynamic soil-pile interaction is the main concern in the design of group piles under earthquake loadings. The lateral resistance of the pile group under dynamic loading becomes different from that of a single pile due to the group pile effect. However, this aspect has not yet been properly studied for the pile group under seismic loading condition. Thus, in this study the group pile effect was evaluated by performing a series of dynamic centrifuge tests on $3{\times}3$ group pile in dry loose sand. The multiplier coefficients for ultimate lateral resistance and subgrade reaction modulus were suggested to obtain the p-y curve of the group pile. The suggested coefficients were verified by performing the nonlinear dynamic analyses, which adopted Beam on Nonlinear Winkler Foundation model. The predicted behavior of the pile group showed the reasonable agreement compared with the results of the centrifuge tests under sinusoidal wave and artificial wave.

Pile and adjacent ground behaviors depending on horizontal offset between pile and tunnel subjected to horizontally loaded single pile (수평하중을 받는 단일 말뚝 하부 터널굴착 시 말뚝-터널 수평이격거리에 따른 말뚝 및 인접 지반 거동)

  • Ahn, Ho-Yeon;Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.685-703
    • /
    • 2017
  • Recently, as the number of high-rise building and earthquake occurrence are increasing, it is more important to consider horizontal load such as wind and seismic loads, earth pressure, for the pile foundation. Also, development of underground space in urban areas is more demanded to meet various problem induced by growing population. Many studies on pile subjected to horizontal load have been conducted by many researchers. However, research regarding interactive behavior on pile subjected to horizontal load with tunnel are rare, so far. In this study, therefore, study on the behaviors of ground and horizontal and vertical loads applied to single pile was carried out using laboratory model test and numerical analysis. The pile axial force and ground deformation were investigated according to offset between pile and tunnel (0.0D, 1.0D, 2.0D: D = tunnel diameter). At the same time, close range photogrammetry was used to measure displacement of underground due to tunnelling during laboratory model test. The results from numerical analysis were compared to that from laboratory model test.

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

Bearing Capacity Study for Small-Scale Testing of Rotary Pile with Helix Plate (축소모형 로타리 파일의 나선날개에 따른 지지성능에 관한 연구)

  • Shin, Eun-Chul;Kim, Kyeong-Sig;Moon, Hyeong-Rok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • Rotary pile consists a single or multiple helix plate and it is installed into the ground using the rotation of the helix plate. Rotary pile in soft ground is able to be supported by pile shaft and helix plate. When the pile is installed into hard layer relatively, the end bearing capacity is possible to be increased by the lower helix plate. In this paper, small-size rotary piles were manufactured with using steel pipe which is reduced to 1/5 size of the rotary pile on the construction field. Pile load test was carried out on the foundation soil which was formed by weathered soft soil. The bearing capacity of small-scale piles depends on the number of helix plate, the length of plate diameter, and an interval of plates, respectively. The bearing capacity of pile increases about 40% with 3 helix plate and it is also confirmed that the bearing capacity is improved about 10% as the increment of plate interval.

Earthquake-resistance Analysis of Piles Using Dynamic Winkler Foundation Model (동적 Winkler 보 모델을 이용한 말뚝의 내진해석)

  • 장재후;유지형;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.39-49
    • /
    • 2002
  • This paper describes a numerical method for pile foundation subjected to earthquake loading using dynamic Winkler foundation model. To verify the numerical method, shaking table tests were carried out. In shaking table tests, accelerations and pile bending moments were measured for single pile and pile groups with a spacing-to-diameter ratio of 2.5 under fixed input base acceleration. In numerical analysis, the input base and free field accelerations measured from shaking table tests were used as input base motions. Based on the results obtained, free field acceleration was magnified relative to input base acceleration, whereas pile head accelerations reduced relatively to free field acceleration for soil-pile interaction. Measured and predicted bending moments for both cases have maximum value within the distance 10cm(4d) from the pile top. However, there are some differences between the results of numerical analysis and shake table test below 10cm(4d) from the pile top.

A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling (말뚝선단의 위치가 터널근접 시공에 의한 말뚝의 거동에 미치는 영향에 대한 연구)

  • Lee, Cheol-Ju;Jeon, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.91-105
    • /
    • 2015
  • In the current work, a series of three-dimensional (3D) finite element analyses have been performed to study the effects of the locations of pile tips on the behaviour of single piles to adjacent tunnelling. In the numerical modelling, several key issues, such as tunnelling-induced pile head settlements, axial pile forces, interface shear stresses and apparent factors of safety have been studied. When the pile tips are inside the influence zone which considers the relative pile tip location with respect to the tunnel position, tunnelling-induced pile head settlements are larger than those computed from the greenfield condition. However, when the pile tips were outside the influence zone, an opposite trend was observed. When the pile tips were inside the influence zone, tunnelling-induced tensile pile forces developed; however, when the pile tips were outside the influence zone, tunnelling-induced compressive pile forces were mobilised, associated with larger settlements of the surrounding soil than the pile settlements. It has been shown that the increases in the tunnelling-induced pile head settlements have resulted in reductions of the apparent factor of safety by about 50% when the pile tips are inside the influence zone, therefore severly affecting the serviceability of piles. The pile behaviour, when considering the location of pile tips with regards to the influence zone, has been analysed in great detail by taking the tunnelling-induced pile head settlements, axial pile force and apparent factor of safety into account.

Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions (지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구)

  • Na, Seon-Hong;Kim, Seong-Hwan;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF

Interactive analysis of a building fame resting on pile foundation

  • Chore, H.S.
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.367-384
    • /
    • 2014
  • The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.

Wave Pressure Characteristics of Pile-Supported Breakwater with the Horizontal Slit Walls (파일지지식 소파방파제의 파압특성 분석)

  • Ko, Kwangoh;Pack, Seungwoo;Park, Changbeom;Lee, Jong-In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.119-128
    • /
    • 2015
  • This study investigates the wave pressure characteristics of the pile-supported breakwater with single or double perforated walls through 2-D hydraulic experiments and the measured wave pressures are compared to those of wave pressures by Goda's formula. For single chamber, the measured wave pressures in the front wall and rear wall decreased to about 25% and 30%, respectively, compared to those of wave pressures by Goda's formula. Also, the decrease in the wave pressures for double chamber were about 27%, 53%, and 64% in the front wall, middle wall, and rear wall, respectively. It was found that the pile-supported breakwater with double perforated walls was more efficient than the single chamber due to wave dissipation effects of double slit walls with horizontal slits.