• Title/Summary/Keyword: Single Phase Operation

Search Result 488, Processing Time 0.027 seconds

A Study on Development of Open-Phase Protector Having Leakage Current Generation and Incapable Operation Prevention at Open-Phase Accident (결상 시 누전전류 발생과 오동작 방지 기능을 갖는 결상보호기 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.182-187
    • /
    • 2015
  • In the three-phase power system, when any one-phase or two-phases is open-phase, the unbalanced current flows and the single-phase power supplies to three-phase loads. Specially, motor coil and transformer coil receive over-current. As a result, great damage as well as electrical fire can occur to the power system. In order to improve these problems, this paper proposes that an open-phase detection device is designed by a new algorithm using electric potential difference between the resultant voltage of neutral point and ground, and a control circuit topology of open-phase protector is composed of highly efficient semiconductor devices. It improves response speed and reliability. The control algorithm circuit also operates the cut-off of a conventional residual current protective device (RCD) which flows an enforced leakage current to ground wire at open-phase accident. Furthermore, time delay circuit is added to prevent the incapable operation of open-phase protector about instantaneous open-phase not open-phase fault. The time delay circuit improves more reliability.

Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types (이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석)

  • Shin-Won Lee;Tae-Hee Han;Sung-Hun Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: II. Verification of Numerical Model and Field Application (지하 LPG 저아공동에 인접한 단일절리에서의 이상유체거동해석: II. 수치모형의 검증 및 적용)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.449-458
    • /
    • 2001
  • In order to verify the numerical model, which was developed to simulate the behavior of the two-phase fluid flow in a single fracture, the characteristic equation of relative permeability was incorporated into the developed numerical model, and the computed results were compared with the experimental results of the model test. As results of the sensitivity analysis on the roughness and the aperture size of fracture, the gas velocity was inversely proportional to the fracture roughness, and not proportional to the square of aperture size which is usually observed in single phase flow in a single fracture. The numerical model was applied to the underground LPG storage terminal in order to check the field applicability. The simultaneous flow of water and gas in accordance with the operation pressures in a single fracture near cavern was simulated by the model. It was shown that the leaked gas was able to be controlled in a single fracture neither by the pressure of operation nor by that of groundwater in case the fracture became smoother in roughness and smaller in aperture size.

  • PDF

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.

The Analysis of Operation Mode of Three-Phase Flux-Lock Type Superconducting Fault Currents Limiter (삼상 자속구속형 한류기의 동작모드분석)

  • Hwang, Jong-Sun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Youn-Sun;Lee, Na-Young;Nam, Gueng-Hyun;Han, Tea-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.46-48
    • /
    • 2006
  • We investigated the analysis of operation mode of three-phase flux-lake type superconducting fault current limiter(SFCL). The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero and the SFCL has negligible influence on the power system, However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes elements of all phase-quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase.

  • PDF

Characteristics of Two Phase Operation of Two Winding Motor Driven by Reference Current Adaptive Inverter (기준전류추정형 인버어터에 의한 2 권선전동기의 2 상운전특성)

  • 원종수;정의상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.8
    • /
    • pp.289-298
    • /
    • 1984
  • The single phase induction motor is recently requested to meet a broad speed control and smooth forward and reverse operation due to the multifarious usages. This paper deals with two phase operation of a two winding motor by reference current adaptive inverter which can supply the currents to satisfy the balanced oeration into the main and auxiliary winding through the entire operational region. According to the roposed system, the starting, forward and reverse and variable speed control of a two winding motor eliminated the capacitor from the capacitor-run motor is also possible. The formation and its principle of the reference current adaptive inverter and characteristic analysis of the motor fed by this apparatus are described in this paper. Excellent agreement with the measured results and calculated values by computer simulation is obtained.

  • PDF

A Study on the Characteristics for Power Capacitor under the Voltage Unbalance Operation (불평형 전압 운전시의 역률보상용 커패시터 특성 연구)

  • Kim, Il-Jung;Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.36-40
    • /
    • 2008
  • Most of the low-voltage feeder are designed with approximately balanced and connected at the three phase four wire systems. However, Most of the power distribution systems' load which is composed of single or three phase are unbalanced by generating load unbalance. Unbalanced current will draw a highly unbalanced voltage. The power factor of an induction motor at rated operation is between 25 and 90%, depending on the size and speed of the motor. However, many induction motors operate below the nominal rating, resulting in poor power factor. This condition needs power factor improvement. Addition of power capacitor at the motor terminal may draw to stress due to voltage unbalance. This paper presents operation characteristics on steady states of a three-phase induction motor under unbalanced voltages with power capacitor. The existence of voltage unbalance have an effect on stress of power capacitor.

Characteristics of Voltage Sag/Swell Compensator Utilizing Single-Phase Matrix Converter

  • Yamamoto, Kichiro;Ikeda, Keisuke;Tsurusaki, Yu;Ikeda, Minoru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.447-453
    • /
    • 2013
  • Compensating characteristics of a voltage sag/swell compensator utilizing single-phase matrix converter is examined. First, system configuration and operation for both voltage sag and swell are described. Next, in order to suppress pulsations of the source voltage, a countermeasure using low pass filter and all pass filter is introduced. Then, compensating characteristics of the compensator are investigated for R-L load by simulation. Finally, the validity of the simulated results is confirmed by the experimental results.

Comparison of Speed Control Performance of Single Phase Induction Motor and BLDC Motor (단상 유도전동기와 BLDC 전동기의 속도제어시의 성능비교)

  • Jung, In-Soung;Sung, Ha-Gyeong;Im, Tae-Bin;Chung, Byung-In
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.921-923
    • /
    • 2001
  • In the field of factory automation, single phase induction motors are frequently used for speed control application because of its simplicity and low cost. In this paper, we compare the performances of a single phase induction type speed control motor with a BLDC motor. From the experimental results in the controllable torque-speed load range, the efficiency characteristics and safe operation load areas are compared for each type sample motor.

  • PDF

Position Estimation Method of Single-Phase Hybrid SRM (단상 하이브리드 SRM의 위치 추정 방법)

  • Tang, Ying;Zhang, Fengge;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.737-739
    • /
    • 2015
  • In this paper, a novel method of sensorless control scheme is proposed to apply on a single phase hybrid SRM used in high speed operation. The proposed method utilizes beneficially permanent magnet field whose performance is motor parameter independent to estimate the rotor position. Also, the current slope is adopted to complete the sensorless control when the motor running with heavy torque at high speed condition. Through this approach, the adjustable turn on/off position can be achieved without prior knowledge of inductance profile which is always employed by many sensorless schemes. And this paper may offer an available method to do the sensorless control in hybrid SRM used for high speed running.

  • PDF