• Title/Summary/Keyword: Single Particle

Search Result 885, Processing Time 0.035 seconds

Influence of Water on Compression Characteristic of Decomposed Granite Soil Based on Single Particle Crushing Strength (단입자파쇄강도에 기초한 화강풍화토의 압축특성에 미치는 수분의 영향)

  • Ham, Tae-Gew;Kim, Uk-Gie
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.101-109
    • /
    • 2008
  • In order to investigate the influence of the water on compression characteristic of decomposed granite soils, a single particle crushing test and one-dimensional compression tests were carried out on three decomposed granite soils and Silica sand. The initial fracture strength for single particle reduced and variability of the strength increases due to weakening by existing water. Moreover, it was recognized that one-dimensional compression characteristic was related to the initial fracture strength characteristic, and the initial fracture strength also has the effect of weathering.

Classification of Dust/Non-dust Particle from the Asian Dust Plumes and Retrieval of Microphysical Properties using Raman Lidar System (다파장 라만 라이다 시스템을 이용한 황사/비황사입자 구분 및 비황사입자의 미세물리적 특성 연구)

  • Shin, Sungkyun;Shin, Dongho;Lee, Kwonho;Noh, Youngmin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2012
  • The particle depolarization ratios were retrieved from the observation with a multi-wavelength Raman lidar at Gwangju, Korea ($35.11^{\circ}N$, $126.54^{\circ}E$). The measurements were carried out on 24 February and 9 March 2004. Using the particle depolarization ratios, the non-dust aerosol particles were distinguished from the Asian dust plume, and the proportion of the non-dust particle to total dust plume was retrieved. The calculated proportion of the non-dust particle was used for the retrieval of backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm of non-dust particles in the dust plume. Microphysical parameters of non-dust particles including single-scattering albedo at 532 nm were retrieved using retrieved optical values. The retrieved single-scattering albedo of non-dust particles was 0.92~0.95 below 1 km height and 0.82~0.91 above 1 km height on 24 February 2004 and $0.81{\pm}0.03$ on 9 March 2004.

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Formation Reaction of Mn-Zn Ferrite by Wet Process (습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF

Understanding the Use of Coal Char Kinetic Models in commercial CFD Codes (상용 CFD 코드에서 사용되는 촤 반응속도 모델에 대한 이해)

  • Kim, Daehee;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.91-94
    • /
    • 2013
  • Commercial computational fluid dynamics (CFD) codes traditionally rely on the computational efficiency of the simplified single-film apparent char kinetic model to predict char particle temperatures and char conversion rates in pulverized coal boilers. The aim of this study is to evaluate the reliability of the single-film apparent kinetic model and to suggest the importance of proper use of this model. For this, a parametric study was conducted with a consideration of main parameters such as Stefan flow, product species, particle evolution, and kinetic parameters.

  • PDF

Aerosol Particle Analysis Using Microwave Plasma Torch (마이크로파 플라즈마 토치를 이용한 에어로졸 입자 분석)

  • Kim, Hahk-Joon;Park, Ji-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.204-207
    • /
    • 2011
  • A particle counting system that can also provide sensitive, specific chemical information, while consuming very less power, occupying less space, and being inexpensive has been developed. This system uses a microwave plasma torch (MPT) as the excitation source for atomic emission spectrometry (AES). Emission from a single particle can be detected, and the wavelength at which the emission is observed indicates the elements present in the particle. It is believed that correlating the particle size and emission intensity will allow us to estimate the particle size in addition to abovementioned capabilities of the system. In the long term, this system can be made field-portable, so that it can be used in atmospheric aerosol monitoring applications, which require real-time detection and characterization of particles at low concentrations.

Rao-Blackwellized Multiple Model Particle Filter Data Fusion algorithm (Rao-Blackwellized Multiple Model Particle Filter자료융합 알고리즘)

  • Kim, Do-Hyeung
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.556-561
    • /
    • 2011
  • It is generally known that particle filters can produce consistent target tracking performance in comparison to the Kalman filter for non-linear and non-Gaussian systems. In this paper, I propose a Rao-Blackwellized multiple model particle filter(RBMMPF) to enhance computational efficiency of the particle filters as well as to reduce sensitivity of modeling. Despite that the Rao-Blackwellized particle filter needs less particles than general particle filter, it has a similar tracking performance with a less computational load. Comparison results for performance is listed for the using single sensor information RBMMPF and using multisensor data fusion RBMMPF.

Single Particle Characterization of Aerosol Particles Collected During "Asian Dust" Storm Events in the Spring of 2000 and 2001, Using Low-Z Electron Probe X-ray Microanalysis (단일입자분석 (Low-Z Electron Probe X-ray Microanalysis)을 이용한 2000년, 2001년에 발생한 황사 입자의 특성분석)

  • 황희진;김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.415-425
    • /
    • 2003
  • A single particle analysis, called low-Z electron probe X-ray microanalysis was applied to characterize the atmospheric aerosols collected during Asian Dust storm events in the year of 2000 and 2001. Most frequently encountered chemical species were the soil-originated species such as aluminosilicates, silicon dioxide, and calcium carbonate. Also various species such as carbon -rich, organics, sea salts, and some reacted calcium carbonate were identified. The observation of internally mixed particles oi calcium carbonate, calcium nitrate and/or calcium sulfate shows the occurrence of the heterogeneous reaction between Asian Dust particles and NO$_{x}$ and/or SO$_{x}$ species in the atmosphere.ere.

Investigation of In-Cylinder Flow Patterns in 4 Valve S. I. Engine by Using Single-Frame Particle Tracking Velocimetry

  • Lee, Ki-hyung;Lee, Chang-sik;Chon, Mun-soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry. Thus, the quantitative analysis of the in-cylinder flow characteristics plays an important role in the improvement of engine performances and the reduction of exhaust emission. In order to obtain the quantitative analysis of the in-cylinder gas flows for a gasoline engine, the single-frame particle tracking velocimetry was developed, which is designed to measure 2-dimensional gas flow field. In this paper, influences of the swirl and tumble intensifying valves on the in-cylinder flow characteristics under the various intake flow conditions were investigated by using this PTV method. Based on the results of experiment, the generation process of swirl and tumble flow in a cylinder during intake stroke was clarified. Its effect on the tumble ratio at the end of compression stroke was also investigated.

  • PDF

Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble (상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법)

  • Park Sang-min;Jin Song-wan;Kim Won-tae;Sung Jae-yong;Yoo Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF