• Title/Summary/Keyword: Single Nucleotide Polymorphism Marker

Search Result 166, Processing Time 0.031 seconds

A double-labeling marker-based method for estimating inbreeding and parental genomic components in a population under conservation

  • Li, Wenting;Zhang, Mengmeng;Wang, Kejun;Lu, Yunfeng;Tang, Hui;Wu, Keliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Objective: The objective of a conservation program is to maintain maximum genetic diversity and preserve the viability of a breed. However, the efficiency of a program is influenced by the ability to accurately measure and predict genetic diversity. Methods: To examine this question, we conducted a simulation in which common measures (i.e. heterozygosity) and novel measures (identity-by-descent probabilities and parental genomic components) were used to estimate genetic diversity within a conserved population using double-labeled single nucleotide polymorphism markers. Results: The results showed that the accuracy and sensitivity of identity-by-state probabilities and heterozygosity were close to identity by descent (IBD) probabilities, which reflect the true genetic diversity. Expected heterozygosity most closely aligned with IBD. All common measures suggested that practices used in the current Chinese pig conservation program result in a ~5% loss in genetic diversity every 10 generations. Parental genomic components were also analyzed to monitor real-time changes in genomic components for each male and female ancestor. The analysis showed that ~7.5% of male families and ~30% of female families were lost every 5 generations. After 50 generations of simulated conservation, 4 male families lost ~50% of their initial genomic components, and the genomic components for 24.8% of the female families were lost entirely. Conclusion: In summary, compared with the true genetic diversity value obtained using double-labeled markers, expected heterozygosity appears to be the optimal indicator. Parental genomic components analysis provides a more detailed picture of genetic diversity and can be used to guide conservation management practices.

Molecular Authentication of Magnoliae Flos Using Robust SNP Marker Base on trnL-F and ndhF Region

  • Kim, Min-Kyeoung;Noh, Jong-Hun;Yan, Deok-Chun;Lee, Sanghun;Lee, Hee-Nyeong;Jin, Chi-Gyu
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.341-349
    • /
    • 2015
  • Magnoliae Flos (Sini in Korean) is one of the most important oriental medicinal plants. In the Korean Herbal Pharmacopeia, the bud of the all species in Manolia denudate and Manolia genus were regarded as the botanical sources for ‘Sini’. Most the dried bud of Manolia denudata, Manolia biondii and Manolia sprengeri were used as ‘Xin-yi’ in China. Therefore, the purpose of this study was to determine and compare the ‘Magnolia’ species, four species including Manolia denudata, M. biondii, M. liliiflora and M. Kobus were analysis of sequencing data revealed DNA polymorphisms. The based on tRNA coding leucine/phenylalanine (trnL-F) and NADH-plastoquinone oxidoreductase subunit 5 (ndhF) sequences in chloroplast DNA. For the identification of ‘Magnolia’ species, polymerase chain reaction (PCR) analysis of chloroplast DNA regions such as ndhF have proven an appropriate method. A single nucleotide polymorphism (SNP) has been identified between genuine “Sini” and their fraudulent and misuse. Specific PCR primers were designed from this polymorphic site within the sequence data, and were used to detect true plants via multiplex PCR.

Genetic Variations of ABCC2 Gene Associated with Adverse Drug Reactions to Valproic Acid in Korean Epileptic Patients

  • Yi, Ji Hyun;Cho, Yang-Je;Kim, Won-Joo;Lee, Min Goo;Lee, Ji Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.254-262
    • /
    • 2013
  • The multidrug resistance protein 2 (MRP2, ABCC2) gene may determine individual susceptibility to adverse drug reactions (ADRs) in the central nervous system (CNS) by limiting brain access of antiepileptic drugs, especially valproic acid (VPA). Our objective was to investigate the effect of ABCC2 polymorphisms on ADRs caused by VPA in Korean epileptic patients. We examined the association of ABCC2 single-nucleotide polymorphisms and haplotype frequencies with VPA related to adverse reactions. In addition, the association of the polymorphisms with the risk of VPA related to adverse reactions was estimated by logistic regression analysis. A total of 41 (24.4%) patients had shown VPA-related adverse reactions in CNS, and the most frequent symptom was tremor (78.0%). The patients with CNS ADRs were more likely to have the G allele (79.3% vs. 62.7%, p=0.0057) and the GG genotype (61.0% vs. 39.7%, p=0.019) at the g.-1774delG locus. The frequency of the haplotype containing g.-1774Gdel was significantly lower in the patients with CNS ADRs than without CNS ADRs (15.8% vs. 32.3%, p=0.0039). Lastly, in the multivariate logistic regression analysis, the presence of the GG genotype at the g.-1774delG locus was identified as a stronger risk factor for VPA related to ADRs (odds ratio, 8.53; 95% confidence interval, 1.04 to 70.17). We demonstrated that ABCC2 polymorphisms may influence VPA-related ADRs. The results above suggest the possible usefulness of ABCC2 gene polymorphisms as a marker for predicting response to VPA-related ADRs.

Detection of Blackleg Resistance Gene Rlm1 in Double-Low Rapeseed Accessions from Sichuan Province, by Kompetitive Allele-Specific PCR

  • Chai, Liang;Zhang, Jinfang;Dilantha Fernando, Wannakuwattewaduge Gerard;Li, Haojie;Huang, Xiaoqin;Cui, Cheng;Jiang, Jun;Zheng, Benchuan;Liu, Yong;Jiang, Liangcai
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.194-199
    • /
    • 2021
  • Blackleg is a serious disease in Brassica plants, causing moderate to severe yield losses in rapeseed worldwide. Although China has not suffered from this disease yet (more aggressive Leptosphaeria maculans is not present yet), it is crucial to take provisions in breeding for disease resistance to have excellent blackleg-resistant cultivars already in the fields or in the breeding pipeline. The most efficient strategy for controlling this disease is breeding plants with identified resistance genes. We selected 135 rapeseed accessions in Sichuan, including 30 parental materials and 105 hybrids, and we determined their glucosinolate and erucic acid content and confirmed 17 double-low materials. A recently developed single-nucleotide polymorphism (SNP) marker, SNP_208, was used to genotype allelic Rlm1/rlm1 on chromosome A07, and 87 AvrLm1-resistant materials. Combined with the above-mentioned seed quality data, we identified 11 AvrLm1-resistant double-low rapeseed accessions, including nine parental materials and two hybrids. This study lays the foundation of specific R gene-oriented breeding, in the case that the aggressive Leptosphaeria maculans invades and establishes in China in the future and a robust and less labor consuming method to identify resistance in canola germplasm.

Construction of Genetic Linkage Map using Microsatellite and SNP Markers in Korean Native Chicken (Microsatellite와 SNP Marker를 이용한 한국재래닭의 유전적 연관지도 작성)

  • Seo, Dong Won;Park, Hee Bok;Choi, Nu Ri;Jin, Shil;Yoo, Chae Kyoung;Sultana, Hasina;Heo, Kang Nyeong;Jo, Cheorun;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.77-86
    • /
    • 2015
  • Chicken is one of the major livestock, especially for supplying proteins to human. The chicken genome size is approximately one-third compared with that of the human genome and regarded as a valuable model animal for genetics and development biology. In this study, we constructed the genetic linkage map for Korean native chicken (KNC) using 131 microsatellite (MS) and 8 single nucleotide polymorphism (SNP) markers. As a result, the total map length was calculated as 2729.4 cM and the average genetic distance between markers was 19.64 cM. The marker orders and genetic distances were well matched with the consensus linkage map except for the physical order of ADL0278 and MCW0351 in GGA8. In addition, the recombination rates in marcrochromosomes were 3.7 times higher than that of microchromosomes. The average numbers of alleles, expected heterozygosity (Hexp) and polymorphic information content (PIC) values were calculated as 5.5, 0.63 and 0.58, respectively. These results will give useful information for the understanding of genetic structure and QTL studies in KNC.

Identification of Domesticated Silkworm Varieties Using a Whole Genome Single Nucleotide Polymorphisms-based Decision Tree (전장유전체 SNP 기반 decision tree를 이용한 누에 품종 판별)

  • Park, Jong Woo;Park, Jeong Sun;Jeong, Chan Young;Kwon, Hyeok Gyu;Kang, Sang Kuk;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young;Kim, Iksoo
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.947-955
    • /
    • 2022
  • Silkworms, which have recently shown promise as functional health foods, show functional differences between varieties; therefore, the need for variety identification is emerging. In this study, we analyzed the whole silkworm genome to identify 10 unique silkworm varieties (Baekhwang, Baekok, Daebaek, Daebak, Daehwang, Goldensilk, Hansaeng, Joohwang, Kumkang, and Kumok) using single nucleotide polymorphisms (SNP) present in the genome as biomarkers. In addition, nine SNPs were selected to discriminate between varieties by selecting SNPs specific to each variety. We subsequently created a decision tree capable of cross-verifying each variety and classifying the varieties through sequential analysis. Restriction fragment length polymorphism (RFLP) was used for SNP867 and SNP9183 to differentiate between the varieties of Daehwang and Goldensilk and between Kumkang and Daebak, respectively. A tetra-primer amplification refractory (T-ARMS) mutation was used to analyze the remaining SNPs. As a result, we could isolate the same group or select an individual variety using the nine unique SNPs from SNP780 to SNP9183. Furthermore, nucleotide sequence analysis for the region confirmed that the alleles were identical. In conclusion, our results show that combining SNP analysis of the whole silkworm genome with the decision tree is of high value as a discriminative marker for classifying silkworm varieties.

Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep

  • Zhang, Zhifeng;Sun, Yawei;Du, Wei;He, Sangang;Liu, Mingjun;Tian, Changyan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1234-1238
    • /
    • 2017
  • Objective: The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. Methods: In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin (VRTN) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. Results: The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. Conclusion: The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

Association study analysis of CD9 as candidate gene for Duroc pig sperm motility and kinematic characteristics (두록 정자 운동학적 특성과 후보유전자 CD9 유전자와의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Choi, Jung-Woo;Jang, Hyun-Jun;Park, Sungk-won;Sa, Soo-Jin;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.281-285
    • /
    • 2016
  • Cluster-of-differentiation antigen 9 (CD9) gene expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as a candidate gene to investigate Duroc boar semen motility and kinematic characteristics. This study was performed to investigatetheir association with semen motility and kinematic characteristics. DNA samples from 96 Duroc pigs with records of sperm motility and kinematic characteristics [Total motile spermatozoa (MOT, $82.27{\pm}5.58$), Curvilinear velocity(VCL, $68.37{\pm}14.58$), Straight-line velocity(VSL, $29.06{\pm}6.58$), the ratio between VSL and VCL(LIN, $47.36{\pm}8.42$), Amplitude of Lateral Head displacement(ALH, $2.88{\pm}0.70$)] were used in present study. A single nucleotide polymorphism (g.358A>T) in intron 6 was associated with MOT, VCL, VAP and ALH in Duroc population (p<0.05). Therefore, we suggest that the porcine CD9 may be used as a molecular marker for Duroc boar semen quality, although its functional effect was not clear yet. These results will improve the understanding of the functions of the CD9 in spermatogenesis within the reproductive tracts, and will shed light on CD9 as a candidate gene in the selection of good sperm quality boars.

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs

  • Liu, Yang;Wang, Chonglong;Liu, Zhengzhu;Xu, Jingen;Fu, Weixuan;Wang, Wenwen;Ding, Xiangdong;Liu, Jianfeng;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1089-1095
    • /
    • 2012
  • Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.

Association Study Between the Polymorphisms of Exostosin-1 Gene and Economic Traits in Hanwoo (한우 Exostosin-1 유전자의 SNP 탐색 및 경제형질 관련성 분석)

  • Kim, Bum-Soo;Kim, Nam-Kuk;Lee, Seung-Hwan;Cho, Yong-Min;Heo, Kang-Nyeong;Park, Eung-Woo;Yang, Boo-Keun;Yoon, Du-Hak
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The aim of this study was to identify the polymorphism on exostosin-1 (EXT1) gene and to associate with economic traits in Hanwoo (Korean cattle). We sequenced for detection of single nucleotide polymorphism (SNP) with 24 unrelated individuals and identified four SNPs (T272196A, C272359T, G290964A and A302092G). Relationship between the genotypes of 583 Hanwoo individuals by PCR-RFLP and economic traits were analyzed by general linear model. In EXT1 gene, there were four SNPs associated with economic traits such as eye muscle area breeding value, marbling score breeding value, backfat and thickness breeding value (p<0.05 to p<0.01). In conclusion, this study indicates an important role of EXT1 gene in determining the meat quality or economic characteristics in Hanwoo.