• Title/Summary/Keyword: Single Nucleotide Polymorphism [SNP]

검색결과 570건 처리시간 0.027초

당뇨병에서 TCF7L2와 FTO 유전자의 특정 단일염기다형성과의 연관성 연구 (Study about the Association between Diabetes and the Targeted SNPs of TCF7L2 and FTO Genes)

  • 하유군;박종형;전찬용;고성규;최유경
    • 동의생리병리학회지
    • /
    • 제24권3호
    • /
    • pp.504-511
    • /
    • 2010
  • Diabetes is a disease that contains a high concentration of glucose in blood and due to defects in either insulin secretion or insulin action. Although the distinctive causes and factors of diabetes have not been clarified, the genetic factors are suggested as a main susceptibility until now. SNP (Single Nucleotide Polymorphism), as the most common genetic variation, has an influence on personal susceptibility for diseases. A nonsynonymous SNP, which changes the amino acid of the protein and its function, is especially important. Therefore, this study hypothesized that there are associations between specific SNPs of the targeted genes. Transcription factor 7-like 2 (TCF7L2) and fat mass and obesity associated (FTO) genes were selected as target genes from the results of genome-wide association and other related research studies. Second, four nonsynonymous SNPs (three in TCF7L2 and one in FTO gene) were selected as target SNPs by using public database of NCBI (National Center for Biotechnology Information). The recruited personnel was classified into three subgroups of diabetes, impaired fasting glucose (IFG) and normal groups. The individual genotypes of each group were analyzed by resequencing. None of genetic variations at four targeted SNP sites was revealed in all samples of this study. However, this study found two new SNPs that were not reported in TCF7L2 gene. One is synonymous SNP, which is heterozygous of C/T and no amino acid change of asparagine/asparagines, was located at c1641 and found in one normal person. Another is nonsynonymous SNP, which is heterozygous of G/A, was located at c1501 and found in two samples. This new discovered nonsynonymous SNP induce the amino acid change from alanine to threonine. Moreover, this new nonsynonymous SNP was found among two persons, one of whom was a diabetes patient and the other one was a person at boundary between IFG and normal, suggesting that this variant might be associated with IFG or diabetes. Even if there is a limitation of sample number for statistical power, this study has an importance due to the discovery of new SNPs. In the future study, a large sample number of diabetes cohort will be needed to investigate the frequency and association with new discovered SNP.

A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo

  • Li, Yi;Gao, Yuxuan;Kim, You-Sam;Iqbal, Asif;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.8-19
    • /
    • 2017
  • Objective: A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs) with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. Methods: The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. Results: A total of 18 (0), 15 (3), 12 (8), 15 (18), 11 (7), and 21 (1) SNPs were detected at the 5% chromosome (genome) - wise level for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area (LMA) and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL) regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29) were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA). Conclusion: The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

Predicting the Accuracy of Breeding Values Using High Density Genome Scans

  • Lee, Deuk-Hwan;Vasco, Daniel A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.162-172
    • /
    • 2011
  • In this paper, simulation was used to determine accuracies of genomic breeding values for polygenic traits associated with many thousands of markers obtained from high density genome scans. The statistical approach was based upon stochastically simulating a pedigree with a specified base population and a specified set of population parameters including the effective and noneffective marker distances and generation time. For this population, marker and quantitative trait locus (QTL) genotypes were generated using either a single linkage group or multiple linkage group model. Single nucleotide polymorphism (SNP) was simulated for an entire bovine genome (except for the sex chromosome, n = 29) including linkage and recombination. Individuals drawn from the simulated population with specified marker and QTL genotypes were randomly mated to establish appropriate levels of linkage disequilibrium for ten generations. Phenotype and genomic SNP data sets were obtained from individuals starting after two generations. Genetic prediction was accomplished by statistically modeling the genomic relationship matrix and standard BLUP methods. The effect of the number of linkage groups was also investigated to determine its influence on the accuracy of breeding values for genomic selection. When using high density scan data (0.08 cM marker distance), accuracies of breeding values on juveniles were obtained of 0.60 and 0.82, for a low heritable trait (0.10) and high heritable trait (0.50), respectively, in the single linkage group model. Estimates of 0.38 and 0.60 were obtained for the same cases in the multiple linkage group models. Unexpectedly, use of BLUP regression methods across many chromosomes was found to give rise to reduced accuracy in breeding value determination. The reasons for this remain a target for further research, but the role of Mendelian sampling may play a fundamental role in producing this effect.

Meta-analysis of Associations between the MDM2-T309G Polymorphism and Prostate Cancer Risk

  • Chen, Tao;Yi, Shang-Hui;Liu, Xiao-Yu;Liu, Zhi-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4327-4330
    • /
    • 2012
  • The mouse double minute 2 (MDM2) gene plays a key role in the p53 pathway, and the SNP 309T/G single-nucleotide polymorphism in the promoter region of MDM2 has been shown to be associated with increased risk of cancer. However, no consistent results were found concerning the relationships between the polymorphism and prostate cancer risk. This meta-analysis, covering 4 independent case-control studies, was conducted to better understand the association between MDM2-SNP T309G and prostate cancer risk focusing on overall and subgroup aspects. The analysis revealed, no matter what kind of genetic model was used, no significant association between MDM2-SNP T309G and prostate cancer risk in overall analysis (GT/TT: OR = 0.84, 95%CI = 0.60-1.19; GG/TT: OR = 0.69, 95%CI = 0.43-1.11; dominant model: OR = 0.81, 95%CI= 0.58-1.13; recessive model: OR = 1.23, 95%CI = 0.95-1.59). In subgroup analysis, the polymorphism seemed more likely to be a protective factor in Europeans (GG/TT: OR = 0.52, 95%CI = 0.31-0.87; recessive model: OR = 0.58, 95%CI = 0.36-0.95) than in Asian populations, and a protective effect of the polymorphism was also seen in hospital-based studies in all models (GT/TT: OR = 0.74, 95%CI = 0.57-0.97; GG/TT: OR = 0.55, 95%CI = 0.38-0.79; dominant model: OR = 0.69, 95%CI = 0.54-0.89; recessive model: OR = 0.70, 95%CI = 0.51-0.97). However, more primary studies with a larger number of samples are required to confirm our findings.

SNP Discovery from Transcriptome of Cashmere Goat Skin

  • Wang, Lele;Zhang, Yanjun;Zhao, Meng;Wang, Ruijun;Su, Rui;Li, Jinquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권9호
    • /
    • pp.1235-1243
    • /
    • 2015
  • The goat Capra hircus is one of several economically important livestock in China. Advances in molecular genetics have led to the identification of several single nucleotide variation markers associated with genes affecting economic traits. Validation of single nucleotide variations in a whole-transcriptome sequencing is critical for understanding the information of molecular genetics. In this paper, we aim to develop a large amount of convinced single nucleotide polymorphisms (SNPs) for Cashmere goat through transcriptome sequencing. In this study, the transcriptomes of Cashmere goat skin at four stages were measured using RNA-sequencing and 90% to 92% unique-mapped-reads were obtained from total-mapped-reads. A total of 56,231 putative SNPs distributed among 10,057 genes were identified. The average minor allele frequency of total SNPs was 18%. GO and KEGG pathway analysis were conducted to analyze the genes containing SNPs. Our follow up biological validation revealed that 64% of SNPs were true SNPs. Our results show that RNA-sequencing is a fast and efficient method for identification of a large number of SNPs. This work provides significant genetic resources for further research on Cashmere goats, especially for the high density linkage map construction and genome-wide association studies.

A simple and rapid method for detection of single nucleotide variants using tailed primer and HRM analysis

  • Hyeonguk Baek;Inchul, Choi
    • 한국동물생명공학회지
    • /
    • 제38권4호
    • /
    • pp.209-214
    • /
    • 2023
  • Background: Single nucleotide polymorphisms (SNPs) are widely used genetic markers with applications in human disease diagnostics, animal breeding, and evolutionary studies, but existing genotyping methods can be labor-intensive and costly. The aim of this study is to develop a simple and rapid method for identification of a single nucleotide change. Methods: A modified Polymerase Chain Reaction Amplification of Multiple Specific Alleles (PAMSA) and high resolution melt (HRM) analysis was performed to discriminate a bovine polymorphism in the NCAPG gene (rs109570900, 1326T > G). Results: The inclusion of tails in the primers enabled allele discrimination based on PCR product lengths, detected through agarose gel electrophoresis, successfully determining various genotypes, albeit with some time and labor intensity due to the use of relatively costly high-resolution agarose gels. Additionally, high-resolution melt (HRM) analysis with tailed primers effectively distinguished the GG genotype from the TT genotype in bovine muscle cell lines, offering a reliable way to distinguish SNP polymorphisms without the need for time-consuming AS-PCR. Conclusions: Our experiments demonstrated the importance of incorporating unique mismatched bases in the allele-specific primers to prevent cross-amplification by fragmented primers. This efficient and cost-effective method, as presented here, enables genotyping laboratories to analyze SNPs using standard real-time PCR.

Single nucleotide polymorphism-based analysis of the genetic structure of Liangshan pig population

  • Liu, Bin;Shen, Linyuan;Guo, Zhixian;Gan, Mailing;Chen, Ying;Yang, Runling;Niu, Lili;Jiang, Dongmei;Zhong, Zhijun;Li, Xuewei;Zhang, Shunhua;Zhu, Li
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1105-1115
    • /
    • 2021
  • Objective: To conserve and utilize the genetic resources of a traditional Chinese indigenous pig breed, Liangshan pig, we assessed the genetic diversity, genetic structure, and genetic distance in this study. Methods: We used 50K single nucleotide polymorphism (SNP) chip for SNP detection of 139 individuals in the Liangshan Pig Conservation Farm. Results: The genetically closed conserved population consisted of five overlapping generations, and the total effective content of the population (Ne) was 15. The whole population was divided into five boar families and one non-boar family. Among them, the effective size of each generation subpopulation continuously decreased. However, the proportion of polymorphic markers (PN) first decreased and then increased. The average genetic distance of these 139 Liangshan pigs was 0.2823±0.0259, and the average genetic distance of the 14 boars was 0.2723±0.0384. Thus, it can be deduced that the genetic distance changed from generation to generation. In the conserved population, 983 runs of homozygosity (ROH) were detected, and the majority of ROH (80%) were within 100 Mb. The inbreeding coefficient calculated based on ROH showed an average value of 0.026 for the whole population. In addition, the inbreeding coefficient of each generation subpopulation initially increased and then decreased. In the pedigree of the whole conserved population, the error rate of paternal information was more than 11.35% while the maternal information was more than 2.13%. Conclusion: This molecular study of the population genetic structure of Liangshan pig showed loss of genetic diversity during the closed cross-generation reproduction process. It is necessary to improve the mating plan or introduce new outside blood to ensure long-term preservation of Liangshan pig.

Polymorphism, Expression of Natural Resistance-associated Macrophage Protein 1 Encoding Gene (NRAMP1) and Its Association with Immune Traits in Pigs

  • Ding, Xiaoling;Zhang, Xiaodong;Yang, Yong;Ding, Yueyun;Xue, Weiwei;Meng, Yun;Zhu, Weihua;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권8호
    • /
    • pp.1189-1195
    • /
    • 2014
  • Natural resistance-associated macrophage protein 1 encoding gene (NRAMP1) plays an important role in immune response against intracellular pathogens. To evaluate the effects of NRAMP1 gene on immune capacity in pigs, tissue expression of NRAMP1 mRNA was observed by real time quantitative polymerase chain reaction (PCR), and the results revealed NRAMP1 expressed widely in nine tissues. One single nucleotide polymorphism (SNP) (ENSSSCG00000025058: g.130 C>T) in exon1 and one SNP (ENSSSCG00000025058: g.657 A>G) in intron1 region of porcine NRAMP1 gene were demonstrated by DNA sequencing and PCR-RFLP analysis. A further analysis of SNP genotypes associated with immune traits including contain of white blood cell (WBC), granulocyte, lymphocyte, monocyte (MO), rate of cytotoxin in monocyte (MC) and $CD4^-CD8^+$ T lymphocyte subpopulations in blood was carried out in four pig populations including Large White and three Chinese indigenous breeds (Wannan Black, Huai pig and Wei pig). The results showed that the SNP (ENSSSCG00000025058: g.130 C>T) was significantly associated with level of WBC % (p = 0.031), MO% (p = 0.024), MC% (p = 0.013) and $CD4^-CD8^+$ T lymphocyte (p = 0.023). The other SNP (ENSSSCG00000025058: g.657 A>G) was significantly associated with the level of MO% (p = 0.012), MC% (p = 0.019) and $CD4^-CD8^+$ T lymphocyte (p = 0.037). These results indicate that the NRAMP1 gene can be regarded as a molecular marker for genetic selection of disease susceptibility in pig breeding.

Identification of Stearoyl-CoA Desaturase (SCD) Gene Interactions in Korean Native Cattle Based on the Multifactor-dimensionality Reduction Method

  • Oh, Dong-Yep;Jin, Me-Hyun;Lee, Yoon-Seok;Ha, Jae-Jung;Kim, Byung-Ki;Yeo, Jung-Sou;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권9호
    • /
    • pp.1218-1228
    • /
    • 2013
  • Fat quality is determined by the composition of fatty acids. Genetic relationships between this composition and single nucleotide polymorphisms (SNPs) in the stearoyl-CoA desaturase1 (SCD1) gene were examined using 513 Korean native cattle. Single and epistatic effects of 7 SNP genetic variations were investigated, and the multifactor dimensionality reduction (MDR) method was used to investigate gene interactions in terms of oleic acid (C18:1), mono-unsaturated fatty acids (MUFAs) and marbling score (MS). The g.6850+77 A>G and g.14047 C>T SNP interactions were identified as the statistically optimal combination (C18:1, MUFAs and MS permutation p-values were 0.000, 0.000 and 0.001 respectively) of two-way gene interactions. The interaction effects of g.6850+77 A>G, g.10213 T>C and g.14047 C>T reflected the highest training-balanced accuracy (63.76%, 64.70% and 61.85% respectively) and was better than the individual effects for C18:1, MUFAs and MS. In addition, the superior genotype groups were AATTCC, AGTTCC, GGTCCC, AGTCCT, GGCCCT and AGCCTT. These results suggest that the selected SNP combination of the SCD1 gene and superior genotype groups can provide useful inferences for the improvement of the fatty acid composition in Korean native cattle.

SNP과 Haplotype 분석의 통계적 문제점들

  • 김호;조성일;서유신;현순주;노재정;이복주
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.203-207
    • /
    • 2002
  • Post-genome 시대를 맞이하여 인류는 전 유전체에서의 염기서열에 대한 정보를 가질 수 있게 되었다. 이러한 정보를 이용하여서 인간에게 나타나는 다양성을 설명하기 위해서 SNP(Single Nucleotide Polymorphism)의 연구가 활발히 되고 있다. 하지만 인간 체세포의 염색체는 2쌍으로 되어있기 때문에 이러한 정보가 어떠한 쌍의 조합(haplotype)으로 나타나는가를 고려하여야한다. 현재 실험적 방법으로 이를 고려하기에는 여러 가지 제약이 따르므로 통계적인 방법으로 이를 모형화하려는 노력(in silico haplotyping)이 시도되고 있다. 이 논문에서는 통계적으로 haplotype을 정하는 대표적인 알고리즘인 Clark's algorithm, E-M algorithm 등에 대한 고찰을 통하여 유전체통계학에 대한 소개를 하고자 한다.

  • PDF