• Title/Summary/Keyword: Single Input/Single Output Converter

Search Result 192, Processing Time 0.027 seconds

Single-Phase Z-Source AC/AC Converter with Wide Range Output Voltage Operation

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.736-747
    • /
    • 2009
  • A new type of single-phase Z-source AC/AC converter based on a single-phase matrix converter is proposed in this paper. The proposed single-phase Z-source AC/AC converter has unique features; namely that the output voltage can be bucked and in-phase/out-of-phase with the input voltage; that the output voltage can be boosted and in-phase/out-of-phase with the input voltage. The converter employs a safe-commutation strategy to conduct along a continuous current path, which results in the elimination of voltage spikes on switches without the need for a snubber circuit. The operating principles of the proposed single-phase Z-source AC/AC converter are described, and a circuit analysis is provided. To verify the performance of the proposed converter, a laboratory prototype based on a TMS320F2812 DSP was constructed. The simulation and the experimental results verified that the output voltage can be bucked-boosted and in-phase with the input voltage, and that the output voltage can be bucked-boosted and out-of-phase with the input voltage.

Single Input Multi Output DC/DC Converter: An Approach to Voltage Balancing in Multilevel Inverter

  • Banaei, M.R.;Nayeri, B.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1537-1543
    • /
    • 2014
  • This paper presents a new DC/AC multilevel converter. This configuration uses single DC sources. The proposed converter has two stages. The first stage is a DC/DC converter that can produce several DC-links in the output. The DC/DC converter is one type of boost converter and uses single inductor. The second stage is a multilevel inverter with several capacitor links. In this paper, one single input multi output DC-DC converter is used in order to voltage balancing on multilevel converter. In addition, as compare to traditional multilevel inverter, presented DC/AC multilevel converter has less on-state voltage drop and conduction losses. Finally, in order to verify the theoretical issues, simulation and experimental results are presented.

Design and Making of PWM Control based Single Input/Single Output DC-DC Buck Converter with Multiple Output Voltage (다중 전압 출력을 가지는 PWM 제어 기반 단일 입력/단일 출력 강압형 DC-DC 컨버터 설계 및 제작)

  • Ki-Won Nam;Jin-Woo Lee;Wan-Hyeok Kim;Tae-Keun Jang;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.853-860
    • /
    • 2024
  • In this study, a design method for a PWM control-based single input/single output buck DC-DC converter with multiple output voltages was studied which is recently required in industrial electronic devices. Based on the basic theory of the buck DC-DC converter, the design method of the buck converter was determined and a voltage control algorithm based on PWM control for a single-input, single-output buck converter that can selectively obtain multi-level output voltages was developed. To verify the effectiveness of the design methodology, a prototype was designed and made. Next, under a test environment based on the prototype DC-DC converter, the effectiveness of the PWM control-based voltage control method was verified by confirming that the multiple output voltages track within an error rate of 7% when the target voltages are selectively determined for the fixed and variable input voltages.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

THREE LEVEL SINGLE-PHASE SINGLE STAGE AC/DC RESONANT CONVERTER WITH A WIDE OUTPUT OPERATING VOLTAGE RANGE (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Lee, G.W;Kim, M.J;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.434-435
    • /
    • 2018
  • In this paper, a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage is presented. It integrates a PFC converter and a three level DC/DC converter into one. The proposed converter operates at a fixed frequency and provides a wide controllable output voltage ($200V_{dc}-430V_{dc}$) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. Moreover, all the switching devices operate with ZVS, and the converter's THD is small especially at full load. The feasibility of the proposed converter is verified with experimental results of a 1.5kW prototype.

  • PDF

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

Dual-Output Single-Stage Bridgeless SEPIC with Power Factor Correction

  • Shen, Chih-Lung;Yang, Shih-Hsueh
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.309-318
    • /
    • 2015
  • This study proposes a dual-output single-stage bridgeless single-ended primary-inductor converter (DOSSBS) that can completely remove the front-end full-bridge alternating current-direct current rectifier to accomplish power factor correction for universal line input. Without the need for bridge diodes, the proposed converter has the advantages of low component count and simple structure, and can thus significantly reduce power loss. DOSSBS has two uncommon output ports to provide different voltage levels to loads, instead of using two separate power factor correctors or multi-stage configurations in a single stage. Therefore, this proposed converter is cost-effective and compact. A magnetically coupled inductor is introduced in DOSSBS to replace two separate inductors to decrease volume and cost. Energy stored in the leakage inductance of the coupled inductor can be completely recycled. In each line cycle, the two active switches in DOSSBS are operated in either high-frequency pulse-width modulation pattern or low-frequency rectifying mode for switching loss reduction. A prototype for dealing with an $85-265V_{rms}$ universal line is designed, analyzed, and built. Practical measurements demonstrate the feasibility and functionality of the proposed converter.

A Single-Phase Quasi Z-Source AC-AC Converter with a Series Connection of the Output Terminals (출력이 직렬 결합된 단상 Quasi Z-소스 AC-AC 컨버터)

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.415-429
    • /
    • 2011
  • In this study, a single-phase quasi Z-source AC-AC converters with a series connection of the output terminals is proposed. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel and its output terminals are connected in series. The out of phase mode and in phase mode of the proposed system are presented. To verify the validity of the proposed converter, a DSP controlled hardware was made and PSIM simulation was executed. As a result, controlling the duty ratio of the converter, the desired buck-boost output voltages could be generated. For each modes, as compared with the single converter operation, the proposed converter could enhance the efficiency and input power factor according to different loads. Also, in case of the out of phase mode under the constant load, the efficiency and input power factor of the proposed system are increased 10[%], 35[%] respectively in compared with the single converter. And, the output voltage is constantly controlled in dynamic state in case while the load is suddenly changed.

New PCS Applied High Boost Ratio Dual Converter and Single Phase Half Bridge Inverter (고승압 듀얼 컨버터와 단상 하프 브릿지 인버터를 적용한 새로운 PCS)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hyun, Seung-Wook;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.515-522
    • /
    • 2013
  • In this paper, a new PCS is proposed which is consisted of high boost dual converter and single phase half-bridge inverter. The proposed PCS is configured in parallel input / serial output, using two interleaved voltage doubler converter. Converter of the proposed PCS is distribute input current by configuring parallel input and reduced turn ratio of transformer by configuring serial output. Also, compositions of the inverter are composed of serial output capacitor of converter and half-bridge inverter. The dual converter and single phase half-bridge inverter is designed and characteristic of the new PCS is analysed. The system of the 1.5[kW] PCS is verified through an experimental about operation and stability.

Half Load-Cycle Worked Dual SEPIC Single-Stage Inverter

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei;Zheng, Chang-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • The two-stage converter is widely used in traditional DC/AC inverter. It has several disadvantages such as complex topology, large volume and high loss. In order to overcome these shortcomings, a novel half load-cycle worked dual SEPIC single-stage inverter, which is based on the analysis of the relationship between input and output voltages of SEPIC converters operating in the discontinuous conduction mode (DCM), is presented in this paper. The traditional single-stage inverter has remarkable advantages in small and medium power applications, but it can’t realize boost DC/AC output directly. Besides one pre-boost DC/DC converter is needed between the DC source and the traditional single-stage inverter. A novel DC/AC inverter without pre-boost DC/DC converter, which is comprised of two SEPIC converters, is studied. The output of dual SEPIC converters is connected with anti-parallel and half load-cycle control is used to realize boost and buck DC/AC output directly and work properly, whatever the DC input voltage is higher or lower than the AC output voltage. The working principle, parameter selection and the control strategy of the inverters are analyzed in this paper. Simulation and experiment results verify the feasibility of the new inverter.