• Title/Summary/Keyword: Single Image Super-resolution

Search Result 71, Processing Time 0.027 seconds

Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network (잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법)

  • Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1604-1611
    • /
    • 2020
  • Light field image captured by a microlens array-based camera has many limitations in practical use due to its low spatial resolution and angular resolution. High spatial resolution images can be easily acquired with a single image super-resolution technique that has been studied a lot recently. But there is a problem in that high angular resolution images are distorted in the process of using disparity information inherent among images, and thus it is difficult to obtain a high-quality angular resolution image. In this paper, we propose light field angular super-resolution that extracts an initial feature map using an dilated convolutional neural network in order to effectively extract the view difference information inherent among images and generates target image using a residual neural network. The proposed network showed superior performance in PSNR and subjective image quality compared to existing angular super-resolution networks.

Hierarchical Regression for Single Image Super Resolution via Clustering and Sparse Representation

  • Qiu, Kang;Yi, Benshun;Li, Weizhong;Huang, Taiqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2539-2554
    • /
    • 2017
  • Regression-based image super resolution (SR) methods have shown great advantage in time consumption while maintaining similar or improved quality performance compared to other learning-based methods. In this paper, we propose a novel single image SR method based on hierarchical regression to further improve the quality performance. As an improvement to other regression-based methods, we introduce a hierarchical scheme into the process of learning multiple regressors. First, training samples are grouped into different clusters according to their geometry similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be learned by linear regression. Experiment results show that hierarchical scheme can lead to regression that is more precise. Our method achieves superior high quality results compared with several state-of-the-art methods.

Single Image Super Resolution using Multi Grouped Block with Adaptive Weighted Residual Blocks (적응형 가중치 잔차 블록을 적용한 다중 블록 구조 기반의 단일 영상 초해상도 기법)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.3 no.3
    • /
    • pp.9-14
    • /
    • 2024
  • In this paper, proposes a method using a multi block structure composed of residual blocks with adaptive weights to improve the quality of results in single image super resolution. In the process of generating super resolution images using deep learning, the most critical factor for enhancing quality is feature extraction and application. While extracting various features is essential for restoring fine details that have been lost due to low resolution, issues such as increased network depth and complexity pose challenges in practical implementation. Therefore, the feature extraction process was structured efficiently, and the application process was improved to enhance quality. To achieve this, a multi block structure was designed after the initial feature extraction, with nested residual blocks inside each block, where adaptive weights were applied. Additionally, for final high resolution reconstruction, a multi kernel image reconstruction process was employed, further improving the quality of the results. The performance of the proposed method was evaluated by calculating PSNR and SSIM values compared to the original image, and its superiority was demonstrated through comparisons with existing algorithms.

Jointly Learning of Heavy Rain Removal and Super-Resolution in Single Images

  • Vu, Dac Tung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.113-117
    • /
    • 2020
  • Images were taken under various weather such as rain, haze, snow often show low visibility, which can dramatically decrease accuracy of some tasks in computer vision: object detection, segmentation. Besides, previous work to enhance image usually downsample the image to receive consistency features but have not yet good upsample algorithm to recover original size. So, in this research, we jointly implement removal streak in heavy rain image and super resolution using a deep network. We put forth a 2-stage network: a multi-model network followed by a refinement network. The first stage using rain formula in the single image and two operation layers (addition, multiplication) removes rain streak and noise to get clean image in low resolution. The second stage uses refinement network to recover damaged background information as well as upsample, and receive high resolution image. Our method improves visual quality image, gains accuracy in human action recognition task in datasets. Extensive experiments show that our network outperforms the state of the art (SoTA) methods.

  • PDF

Fast Very Deep Convolutional Neural Network with Deconvolution for Super-Resolution (Super-Resolution을 위한 Deconvolution 적용 고속 컨볼루션 뉴럴 네트워크)

  • Lee, Donghyeon;Lee, Ho Seong;Lee, Kyujoong;Lee, Hyuk-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1750-1758
    • /
    • 2017
  • In super-resolution, various methods with Convolutional Neural Network(CNN) have recently been proposed. CNN based methods provide much higher image quality than conventional methods. Especially, VDSR outperforms other CNN based methods in terms of image quality. However, it requires a high computational complexity which prevents real-time processing. In this paper, the method to apply a deconvolution layer to VDSR is proposed to reduce computational complexity. Compared to original VDSR, the proposed method achieves the 4.46 times speed-up and its degradation in image quality is less than -0.1 dB which is negligible.

Fast Patch Retrieval for Example-based Super Resolution by Multi-phase Candidate Reduction (단계적 후보 축소에 의한 예제기반 초해상도 영상복원을 위한 고속 패치 검색)

  • Park, Gyu-Ro;Kim, In-Jung
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.264-272
    • /
    • 2010
  • Example-based super resolution is a method to restore a high resolution image from low resolution images through training and retrieval of image patches. It is not only good in its performance but also available for a single frame low-resolution image. However, its time complexity is very high because it requires lots of comparisons to retrieve image patches in restoration process. In order to improve the restoration speed, an efficient patch retrieval algorithm is essential. In this paper, we applied various high-dimensional feature retrieval methods, available for the patch retrieval, to a practical example-based super resolution system and compared their speed. As well, we propose to apply the multi-phase candidate reduction approach to the patch retrieval process, which was successfully applied in character recognition fields but not used for the super resolution. In the experiments, LSH was the fastest among conventional methods. The multi-phase candidate reduction method, proposed in this paper, was even faster than LSH: For $1024{\times}1024$ images, it was 3.12 times faster than LSH.

Raw Sensor Single Image Super Resolution Using Color Corrector-Attention Network (코렉터 어텐션 네트워크을 이용한 로우 센서 영상 초해상화 기법)

  • Paul Shin;Teaha Kim;Yeejin Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.90-99
    • /
    • 2023
  • In this paper, we propose a super resolution network for raw sensor image which data size is lower comparatively to RGB image. But the actual capabilities of raw image super resolution depends on color correction because its absent of camera post processing that leads to unintended result having different white balance, saturation, etc. Thus, we introduce novel color corrector attention network by adopting the idea of precedent raw super resolution research, and tune to the our faced problem from data specification. The result is not superior to former researches but shows decent output on certain performance matrix. In the same time, we encounter new challenging problem of unexpected shadowing artifact around image objects that cause performance declination despite its good result overall. This problem remains a task to be solved in the future research.

Deep Learning-based Super Resolution for Phase-only Holograms (위상 홀로그램을 위한 딥러닝 기반의 초고해상도)

  • Kim, Woosuk;Park, Byung-Seo;Kim, Jin-Kyum;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.935-943
    • /
    • 2020
  • In this paper, we propose a method using deep learning for high-resolution display of phase holograms. If a general interpolation method is used, the brightness of the reconstruction result is lowered, and noise and afterimages occur. To solve this problem, a hologram was trained with a neural network structure that showed good performance in the single-image super resolution (SISR). As a result, it was possible to improve the problem that occurred in the reconstruction result and increase the resolution. In addition, by adjusting the number of channels to increase performance, the result increased by more than 0.3dB in same training.

Super-Resolution Algorithm by Motion Estimation with Sub-Pixel Accuracy using 6-Tap FIR Filter (6-Tap FIR 필터를 이용한 부화소 단위 움직임 추정을 통한 초해상도 기법)

  • Kwon, Soon-Chan;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.464-472
    • /
    • 2012
  • In this paper, we propose a new super-resolution algorithm that uses successive frames by applying the block matching motion estimation algorithm. Usually, single frame super-resolution algorithms are based on probability or discrete wavelet transform (DWT) approach to extract high-frequency components of the input image, but only limited information is available for these algorithms. To solve this problem, various multiple-frame based super-resolution algorithms are proposed. The accuracy of registration between frames is a very important factor for the good performance of an algorithm. We therefore propose an algorithm using 6-Tap FIR filter to increase the accuracy of the image registration with sub-pixel unit. Proposed algorithm shows better performance than other conventional interpolation based algorithms such as nearest neighborhood, bi-linear and bi-cubic methods and results in about the same image quality as DWT based super-resolution algorithm.

Single Image Super Resolution Method based on Texture Contrast Weighting (질감 대조 가중치를 이용한 단일 영상의 초해상도 기법)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2024
  • In this paper, proposes a super resolution method that enhances the quality of results by refining texture features, contrasting each, and utilizing the results as weights. For the improvement of quality, a precise and clear restoration result in details such as boundary areas is crucial in super resolution, along with minimizing unnecessary artifacts like noise. The proposed method constructs a residual block structure with multiple paths and skip-connections for feature estimation in conventional Convolutional Neural Network (CNN)-based super resolution methods to enhance quality. Additional learning is performed for sharpened and blurred image results for further texture analysis. By contrasting each super resolution result and allocating weights through this process, the proposed method achieves improved quality in detailed and smoothed areas of the image. The experimental results of the proposed method, evaluated using the PSNR and SSIM values as quality metrics, show higher results compared to existing algorithms, confirming the enhancement in quality.