• Title/Summary/Keyword: Single Image Super-resolution

Search Result 71, Processing Time 0.029 seconds

Optimizing SR-GAN for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation

  • Sajid Hussain;Jung-Hun Shin;Kum-Won Cho
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.479-481
    • /
    • 2023
  • Generative Adversarial Networks (GANs) have facilitated substantial improvement in single-image super-resolution (SR) by enabling the generation of photo-realistic images. However, the high memory requirements of GAN-based SRs (mainly generators) lead to reduced performance and increased energy consumption, making it difficult to implement them onto resource-constricted devices. In this study, we propose an efficient and compressed architecture for the SR-GAN (generator) model using the model compression technique Knowledge Distillation. Our approach involves the transmission of knowledge from a heavy network to a lightweight one, which reduces the storage requirement of the model by 58% with also an increase in their performance. Experimental results on various benchmarks indicate that our proposed compressed model enhances performance with an increase in PSNR, SSIM, and image quality respectively for x4 super-resolution tasks.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

Study of Efficient Network Structure for Real-time Image Super-Resolution (실시간 영상 초해상도 복원을 위한 효율적인 신경망 구조 연구)

  • Jeong, Woojin;Han, Bok Gyu;Lee, Dong Seok;Choi, Byung In;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2018
  • A single-image super-resolution is a process of restoring a high-resolution image from a low-resolution image. Recently, the super-resolution using the deep neural network has shown good results. In this paper, we propose a neural network structure that improves speed and performance over conventional neural network based super-resolution methods. To do this, we analyze the conventional neural network based super-resolution methods and propose solutions. The proposed method reduce the 5 stages of the conventional method to 3 stages. Then we have studied the optimal width and depth by experimenting on the width and depth of the network. Experimental results have shown that the proposed method improves the disadvantages of the conventional methods. The proposed neural network structure showed superior performance and speed than the conventional method.

Super-resolution Algorithm using Discrete Wavelet Transform for Single-image (이산 웨이블릿 변환을 이용한 영상의 초고해상도 기법)

  • Lim, Jong-Myeong;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.344-353
    • /
    • 2012
  • In this paper, we propose a super-resolution algorithm using discrete wavelet transform. In general super-resolution algorithms for single-image, probability based operations have been used for searching high-frequency components. Consequently, the complexity of the algorithm causes the increase of processing time. In the proposed algorithm, we use discrete wavelet transform to find high-frequency sub-bands. We perform inverse discrete wavelet transform using input image and high-frequency sub-bands of the same resolution as the input image which are obtained by performing discrete wavelet transform without down-sampling and then we obtain image with high-resolution. In the proposed algorithm, we use the down-sampled version of the original image ($512{\times}512$) as a test image ($256{\times}256$) to compare the performance of algorithms. Through experimental results, we confirm the improved efficiency of the proposed algorithm comparing with conventional interpolation algorithms and also decreased processing time comparing the probability based operations.

Real Scene Text Image Super-Resolution Based on Multi-Scale and Attention Fusion

  • Xinhua Lu;Haihai Wei;Li Ma;Qingji Xue;Yonghui Fu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Plenty of works have indicated that single image super-resolution (SISR) models relying on synthetic datasets are difficult to be applied to real scene text image super-resolution (STISR) for its more complex degradation. The up-to-date dataset for realistic STISR is called TextZoom, while the current methods trained on this dataset have not considered the effect of multi-scale features of text images. In this paper, a multi-scale and attention fusion model for realistic STISR is proposed. The multi-scale learning mechanism is introduced to acquire sophisticated feature representations of text images; The spatial and channel attentions are introduced to capture the local information and inter-channel interaction information of text images; At last, this paper designs a multi-scale residual attention module by skillfully fusing multi-scale learning and attention mechanisms. The experiments on TextZoom demonstrate that the model proposed increases scene text recognition's (ASTER) average recognition accuracy by 1.2% compared to text super-resolution network.

Mixed-Norm Patch Similarity Search for Self-Example-based Single Image Super-Resolution (자가 표본 기반 단일 영상 초해상도 복원을 위한 혼합 놈 패치 유사도 검색)

  • Oh, Jong-Geun;Hong, Min-Cheol
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.491-494
    • /
    • 2018
  • This paper presents a similarity search method based on mixed norm for enhancing self-example-based single image super-resolution. In order to incorporate the local statistical characteristics of the patches into the super-resolution image reconstruction, we propose a method to determine the order of the norm according to the patch inclination and use it as a similarity search between patches. Experimental results demonstrate that the proposed similarity search method has the capability to improve the performance of existing search method.

CG/VR Image Super-Resolution Using Balanced Attention Mechanism (Balanced Attention Mechanism을 활용한 CG/VR 영상의 초해상화)

  • Kim, Sowon;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.156-163
    • /
    • 2021
  • Attention mechanisms have been used in deep learning-based computer vision systems, including single image super-resolution (SISR) networks. However, existing SISR networks with attention mechanism focused on real image super-resolution, so it is hard to know whether they are available for CG or VR images. In this paper, we attempt to apply a recent attention module, called balanced attention mechanism (BAM) module, to 12 state-of-the-art SISR networks, and then check whether the BAM module can achieve performance improvement in CG or VR image super-resolution. In our experiments, it has been confirmed that the performance improvement in CG or VR image super-resolution is limited and depends on data characteristics, size, and network type.

Improvement of Frame Rate of Electro-Optical Sensor using Temporal Super Resolution based on Color Channel Extrapolation (채널별 색상정보 외삽법 기반 시간적 초해상도 기법을 활용한 전자광학 센서의 프레임률 향상 연구)

  • Noh, SangWoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.120-124
    • /
    • 2017
  • The temporal super resolution is a method for increasing the frame rate. Electro-optical sensors are used in various surveillance and reconnaissance weapons systems, and the spatial resolution and temporal resolution of the required electro-optical sensors vary according to the performance requirement of each weapon system. Because most image sensors capture images at 30~60 frames/second, it is necessary to increase the frame rate when the target moves and changes rapidly. This paper proposes a method to increase the frame rate using color channel extrapolation. Using a DMD, one frame of a general camera was adjusted to have different consecutive exposure times for each channel, and the captured image was converted to a single channel image with an increased frame rate. Using the optical flow method, a virtual channel image was generated for each channel, and a single channel image with an increased frame rate was converted to a color channel image. The performance of the proposed temporal super resolution method was confirmed by the simulation.

Super-resolution in Music Score Images by Instance Normalization

  • Tran, Minh-Trieu;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.64-71
    • /
    • 2019
  • The performance of an OMR (Optical Music Recognition) system is usually determined by the characterizing features of the input music score images. Low resolution is one of the main factors leading to degraded image quality. In this paper, we handle the low-resolution problem using the super-resolution technique. We propose the use of a deep neural network with instance normalization to improve the quality of music score images. We apply instance normalization which has proven to be beneficial in single image enhancement. It works better than batch normalization, which shows the effectiveness of shifting the mean and variance of deep features at the instance level. The proposed method provides an end-to-end mapping technique between the high and low-resolution images respectively. New images are then created, in which the resolution is four times higher than the resolution of the original images. Our model has been evaluated with the dataset "DeepScores" and shows that it outperforms other existing methods.