• Title/Summary/Keyword: Single Frequency Network

검색결과 305건 처리시간 0.026초

DVB-H 시스템을 위한 단일 주파수 네트워크의 성능 (Performance of Single Frequency Network for DVB-H System)

  • 김주찬;이소영;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.151-156
    • /
    • 2010
  • 본 논문에서는 DVB-H 시스템의 성능측정과 적절한 단일주파수망의 셀 커버리지를 연구하기 위하여 컴퓨터를 이용한 모의실험을 수행하였다. 수행된 결과로부터 2K 전송모드가 8K 전송모드에 비하여 도플러 주파수에 강인함을 확인 할 수 있다. 본 논문의 결과는 단일주파수망 설계에 있어 부분적으로 응용될 수 있다.

Single-channel Demodulation Algorithm for Non-cooperative PCMA Signals Based on Neural Network

  • Wei, Chi;Peng, Hua;Fan, Junhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3433-3446
    • /
    • 2019
  • Aiming at the high complexity of traditional single-channel demodulation algorithm for PCMA signals, a new demodulation algorithm based on neural network is proposed to reduce the complexity of demodulation in the system of non-cooperative PCMA communication. The demodulation network is trained in this paper, which combines the preprocessing module and decision module. Firstly, the preprocessing module is used to estimate the initial parameters, and the auxiliary signals are obtained by using the information of frequency offset estimation. Then, the time-frequency characteristic data of auxiliary signals are obtained, which is taken as the input data of the neural network to be trained. Finally, the decision module is used to output the demodulated bit sequence. Compared with traditional single-channel demodulation algorithms, the proposed algorithm does not need to go through all the possible values of transmit symbol pairs, which greatly reduces the complexity of demodulation. The simulation results show that the trained neural network can greatly extract the time-frequency characteristics of PCMA signals. The performance of the proposed algorithm is similar to that of PSP algorithm, but the complexity of demodulation can be greatly reduced through the proposed algorithm.

Design parameter analysis for ATSC 1.0 single frequency networks based on receiver multipath handling performance

  • Hernandez-Flores, Mario A.;Galeano-Torres, Rodrigo;Garcia-Castillo, Miguel A.;Landeros-Ayala, Salvador;Matias-Maruri, Jose M.
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.702-716
    • /
    • 2021
  • This work proposes suitable network configurations for single frequency networks (SFNs) with ATSC 1.0 based on network coverage calculations and the laboratory multipath handling performance of commercial receivers. SFNs are widely used for delivering terrestrial digital television services because of their efficient use of the spectrum. In Mexico the analogue television transmissions switch-off occurred on 31 December 2016. Thus it is expected the adopted ATSC 1.0 system will be in force for the next several years despite the recent standardization of the ATSC 3.0 system. As ATSC 1.0 uses 8-VSB modulation the multipath handling capability of receivers is critical for the design of SFNs. The presented network planning results help develop technical normativity for implementing SFNs in Mexico and other countries that use ATSC 1.0. SFNs with transmitter separation up to 130 km are fully covered for outdoor reception mainly due to the directivity of the receiving antenna. Moreover for indoor reception at least 70% of an SFN coverage area can be achieved with a transmitter separation of up to 60 km depending on the radiated power and the transmitter antenna height.

On Cyclic Delay Diversity with Single Carrier OFDM Based Communication Network

  • A. Sathi Babu;M. Muni Chandrika;P. Sravani;M. Sindhu sowjanyarani;M. Dimpu Krishna
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.95-100
    • /
    • 2024
  • Cyclic Delay Diversity (CDD) is a diversity scheme used in OFDM-based telecommunication systems, transforming spatial diversity into frequency diversity and thus avoiding intersymbol interference without entailing the receiver to be aware of the transmission strategy making the signal more reliable achieving full diversity gain in cooperative systems. Here the analyzation of the influence of CDD-SC scheme in Cognitive Radio Network (CRN) is done with the challenge of overcoming the complication called channel estimation along with overhead in CNR. More specifically, the closed-form expressions for outage probability and symbol error rate are divided under different frequencies among independent and identically distributed (i.i.d.) frequency selective fading channel model i.e., the signal is divided into different frequencies and transmitted among several narrow band channels of different characteristics. It is useful in the reduction of interference and crosstalk. The results reveal the diversity order of the proposed system to be mainly affected by the number of multipath components that are available in the CNR.

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.

Improving the Reception Performance of Legacy T-DMB/DAB Receivers in a Single-Frequency Network with Delay Diversity

  • Baek, Myung-Sun;Lee, Yong-Hoon;Hur, Namho;Kim, Kyung-Seok;Lee, Yong-Tae
    • ETRI Journal
    • /
    • 제36권2호
    • /
    • pp.188-196
    • /
    • 2014
  • This paper describes a simple delay diversity technique for terrestrial digital multimedia broadcasting (T-DMB) and digital audio broadcasting in a single-frequency network (SFN). For the diversity technique, a delay diversity scheme is adopted. In the delay diversity scheme, a non-delayed signal is transmitted in the first antenna, and delayed versions of the signal are transmitted in each additional antenna. For an SFN environment with multiple transmitters, delay diversity can be executed by controlling the emission times of the transmitters. This SFN delay diversity scheme does not require any hardware changes in either the transmitter or receiver, and perfect backward compatibility can be acquired. To evaluate the performance improvement, laboratory tests are executed with various types of commercial T-DMB receivers as well as a measurement receiver. The improvement in the bit error rate performance is evaluated using a measurement receiver, and an improvement of the threshold of visibility value is evaluated for commercial receivers. Test results show that the T-DMB system can obtain diversity gain using the described technique.

단일 안테나를 사용하는 단일대역 전이중 통신을 위한 자기간섭신호제거와 터보 등화기 설계 (Self-Interference Cancellation and Turbo Equalizer Design for the Single-band Full Duplex System using Single Antenna)

  • 최진규;안창영;유흥균
    • 전자공학회논문지
    • /
    • 제52권2호
    • /
    • pp.7-17
    • /
    • 2015
  • 본 논문에서는 터보 등화기를 결합한 단일 안테나 구조의 동일 대역 동시 전 이중 통신 시스템을 제안한다. 본 논문에서 제안하는 시스템은 단일 안테나를 사용하기 위하여 Balanced Feed Network회로를 이용하여 송신 신호와 수신 신호를 격리시킨다. 또한 추가적으로 자기 간섭 신호를 감쇄시키기 위하여 RF Cancellation과 Digital Cancellation을 사용한다. 마지막으로 상대국에서 자국으로의 채널 상황이 열악할 경우와 Digital Cancellation이후에도 남은 잔류 자기 간섭 신호에 의한 상대국에서 보낸 수신 신호에 오류가 발생할 경우에도 통신의 신뢰도를 보장할 수 있도록 터보 등화기를 결합한다. 본 논문에서 제안하는 시스템의 성능을 확인하기 위하여 Simulink 시뮬레이션 프로그램을 이용하여 시스템을 설계하였다. 시뮬레이션 결과, 본 논문에서 제안하는 시스템은 단일 안테나를 사용하며 동일 대역에서 Balanced Feed Network, RF(radio frequency) Cancellation, Digital Cancellation 그리고 터보 등화기를 통해 자기 간섭 신호를 효과적으로 제거하고 열악한 채널 상황에서도 전 이중통신을 할 수 있다.

DTV 분산중계망 필드 테스트 결과 (Field Test Results Of A DTV Distributed Translator Network)

  • 왕수현;서영우;목하균;이재영;이용훈;김흥묵
    • 방송공학회논문지
    • /
    • 제13권4호
    • /
    • pp.463-478
    • /
    • 2008
  • 분산중계 방식은 기존 중계기를 이용하는 MFN(Multiple Frequency Network)과 OCR(On Channel Repeater)을 이용한 SFN(Single Frequency Network)에 비해 기존의 송출시설을 최대한 활용할 수 있고, 짧은 시간에 구축이 가능하여 비용이 효율적이며, 주파수 이용 효율을 높일 수 있는 방식이다. 본 필드 테스트는 이러한 분산중계 방식의 성능을 검증하고자 서울 서북부 지역을 중심으로 3세대, 5세대 그리고 6세대 수신기를 이용하여 총 30개 지점에 대하여 수신 전계강도와 노이즈마진 및 수신가능각을 측정하였고, 수신화질의 주관적 평가를 수행하였다. 필드 테스트를 수행한 결과 모든 조건의 수신기에서 수신 성능의 향상을 보였다. 각 수신기별 특성을 볼 때 3세대 수신기에 비해 5세대 수신기 및 6세대 수상기는 수신율의 향상뿐만 아니라 수신가능각도 증가되어 분산중계망의 가능성을 알 수 있었다.

차동 노이즈 분석을 위한 단상 인버터 고주파 회로 모델링 및 검증 (Single Phase Inverter High Frequency Circuit Modeling and Verification for Differential Mode Noise Analysis)

  • 신주현;생차야;김우중;차한주
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.176-182
    • /
    • 2021
  • This research proposes a high-frequency circuit that can accurately predict the differential mode noise of single-phase inverters at the circuit design stage. Proposed single-phase inverter high frequency circuit in the work is a form in which harmonic impedance components are added to the basic single-phase inverter circuit configuration. For accurate noise prediction, parasitic components present in each part of the differential noise path were extracted. Impedance was extracted using a network analyzer and Q3D in the measurement range of 150 kHz to 30 MHz. A high-frequency circuit model was completed by applying the measured values. Simulations and experiments were conducted to confirm the validity of the high-frequency circuit. As a result, we were able to predict the resonance point of the differential mode voltage extracted as an experimental value with a high-frequency circuit model within an approximately 10% error. Through this outcome, we could verify that differential mode noise can be accurately predicted using the proposed model of the high-frequency circuit without a separate test bench for noise measurement.