• Title/Summary/Keyword: Single Evaporating Droplet

Search Result 7, Processing Time 0.017 seconds

The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space (군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구)

  • 이진호;방창훈;김정수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

Visualization of Breakup and Atomization Processes in Non-evaporating Diesel Sprays (비증발 디젤분무의 분열과 미립화 과정의 가시화)

  • 원영호;김우태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Two-dimensional laser visualization methods have been used in the study of breakup and atomization processes of non-evaporating diesel sprays. A single-hole spray injected into a quiescent atmospheric environment was visualized by the LIF(Laser Induced Fluorescence) and scattering technique. The LIF technique could be implemented to take the images which are magnified enough to show the shape of liquid ligaments and small droplets. The spontaneous scattering and fluorescent images of sprays were also taken to investigate the atomization of droplets. In the tip and periphery of a spray. the scattering light is bright and the ratio of fluorescent/scattering intensity is lower. This characteristics indicate the very high number density of small droplets which are well atomized.

Microexplosive Vaporization of Miscible Binary Fuel Droplets (미세폭발을 가진 혼화 이성분 연료 액적의 증발 현상)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.120-131
    • /
    • 2005
  • The evaporation characteristics of single and multicomponent droplets hanging at the tip of a quartz fiber are studied experimentally at the different environmental conditions under normal gravity. Heptane and Hexadecane are selected as two fuels with different evaporation rates and boiling temperatures. At the first step, the evaporation of single component droplet of both fuels has been examined separately. At the next step the evaporation of several blends of these two fuels, as a binary component droplet, has been studied. The temperature and pressure range is selected between 400 and 700 $^{\circ}C$, and 0.1 and 2.5 MPa, respectively. High temperature environment has been provided by a falling electrical furnace. The initial diameter of droplet was in range of 1.1 and 1.3 mm. The evaporation process was recorded by a high speed CCD camera. The results of binary droplet evaporation show the three staged evaporation. In the the first stage the more volatile component evaporates. The droplet temperature rises after an almost non evaporating period and in the third stage a quasi linear evaporation takes place. The evaporation of the binary droplet at low pressure is accompanied with bubble formation and droplet fragmentation and leads to incomplete microexplosion. The component concentration affects the evaporation behavior of the first two stages. The bubble formation and droplet distortion does not appear at high environment pressure. Nomenclature

  • PDF

Investigation of Internal Flow Fields of Evaporating of Binary Mixture Droplets (증발하는 이성분혼합물 액적의 유동장 해석)

  • Kim, Hyoungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.21-25
    • /
    • 2017
  • If a liquid droplet evaporates on a solid substrate, when it completely dries, it leaves a peculiar pattern, which depends on the composition of the liquid. Not only a single component liquid but also complex liquids are studied for a different purpose. In particular, a binary mixture droplet has been widely studied and used for an ink-jet printing technology. In this study, we focus on investigating to visualize the internal flow field of an ethanol-water mixture by varying a concentration ratio between two liquids. We measure the in-plane velocity vector fields and vorticities. We believe that this fundamental study about the internal flow field provides a basic idea to understand the dried pattern of the binary mixture droplet.

The Evaluation of Heat Flux by Evaporating Droplet on the Hot Surface (고온 표면에 부착된 증발 액적에 의한 열유속 변화 추정)

  • Shin, Woon-Chul;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.764-771
    • /
    • 2007
  • The objective of the present work is to evaluate the evaporation heat flux of deposited droplet on the hot surface by using of inverse heat transfer technique. On the basis of measured temperature, a integral form solution is determined for the transient temperatures beyond the two positions by using Green's function technique. This method first approximates the temperature data with a half polynomial series of time. we compared this result with constant radius model in single phase regime, nucleate boiling regime, film boiling regime respectively. this paper performed the experiments as following conditions: (a)the surface temperature is within the range between $80^{\circ}C\;and\;160^{\circ}C$ in the conduction, (b) droplet diameter are 2.4 and 3.0mm. (c) surface roughness is $0.18{\mu}m$.

Experimental Study on Coffee-ring Effect of Silver Nanowire with Different Parameters (은 나노와이어 특성에 따른 커피 링 현상에 대한 실험적 연구)

  • Kang, Giho;Wang, Xiaofeng;Seong, Baekhoon;Lee, Hyungdong;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.16-20
    • /
    • 2017
  • A coffee-ring effect is from capillary flow by different evaporation rate across the droplet. The capillary flow tends particles to accumulate at the edges of the droplet and makes the ring-shaped stain pattern. These coffee-ring formation and suppression of coffee-ring have been a critical role in printing and coating technologies. In this study, we present the experimental study on coffee-ring effect of silver nanowire inside the evaporating sessile droplet. Size and concentration effect of nanowires at coffee-ring effect has been investigated. From the coffee-ring, we observed the regimes of connected rings and disconnected ones and measure the resistivity of single ring pattern with different nanowire length.

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF