• 제목/요약/키워드: Single Document Summarization

검색결과 10건 처리시간 0.025초

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

문장 수반 관계를 고려한 문서 요약 (Document Summarization Considering Entailment Relation between Sentences)

  • 권영대;김누리;이지형
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.179-185
    • /
    • 2017
  • 문서의 요약은 요약문 내의 문장들끼리 서로 연관성 있게 이어져야 하고 하나의 짜임새 있는 글이 되어야 한다. 본 논문에서는 위의 목적을 달성하기 위해 문장 간의 유사도와 수반 관계(Entailment)를 고려하여 문서 내에서 연관성이 크고 의미, 개념적인 연결성이 높은 문장들을 추출할 수 있도록 하였다. 본 논문에서는 Recurrent Neural Network 기반의 문장 관계 추론 모델과 그래프 기반의 랭킹(Graph-based ranking) 알고리즘을 혼합하여 단일 문서 추출요약 작업에 적용한 새로운 알고리즘인 TextRank-NLI를 제안한다. 새로운 알고리즘의 성능을 평가하기 위해 기존의 문서요약 알고리즘인 TextRank와 동일한 데이터 셋을 사용하여 성능을 비교 분석하였으며 기존의 알고리즘보다 약 2.3% 더 나은 성능을 보이는 것을 확인하였다.

Latent Semantic Analysis Approach for Document Summarization Based on Word Embeddings

  • Al-Sabahi, Kamal;Zuping, Zhang;Kang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.254-276
    • /
    • 2019
  • Since the amount of information on the internet is growing rapidly, it is not easy for a user to find relevant information for his/her query. To tackle this issue, the researchers are paying much attention to Document Summarization. The key point in any successful document summarizer is a good document representation. The traditional approaches based on word overlapping mostly fail to produce that kind of representation. Word embedding has shown good performance allowing words to match on a semantic level. Naively concatenating word embeddings makes common words dominant which in turn diminish the representation quality. In this paper, we employ word embeddings to improve the weighting schemes for calculating the Latent Semantic Analysis input matrix. Two embedding-based weighting schemes are proposed and then combined to calculate the values of this matrix. They are modified versions of the augment weight and the entropy frequency that combine the strength of traditional weighting schemes and word embedding. The proposed approach is evaluated on three English datasets, DUC 2002, DUC 2004 and Multilingual 2015 Single-document Summarization. Experimental results on the three datasets show that the proposed model achieved competitive performance compared to the state-of-the-art leading to a conclusion that it provides a better document representation and a better document summary as a result.

단일 문서의 인위적 요약과 MMR 통계요약의 비교 및 분석 (Analyses and Comparisons of Human and Statistic-based MMR Summarizations of Single Documents)

  • 유준현;변동률;박순철
    • 전자공학회논문지CI
    • /
    • 제41권2호
    • /
    • pp.43-50
    • /
    • 2004
  • 웹과 같은 대량의 문서집단에서 단일 문서에 대한 자동 요약은 일반적으로 통계요약 방법을 이용한다. 그러나 단순한 통계 요약 방법은 문서내의 빈도수가 높은 단어를 포함하는 문장들이 중복되어 나타날 확률이 높다. 이러한 단점을 보완하기 위하여 본 논문에서는 통계기반 요약방법에 MMR 기법을 적용하여 요약의 질을 향상시켰다(약 λ=0.6에서 최고의 성능을 보임). 또한 본 논문에서는 인위적 요약을 수행하여 MMR 통계기반의 요약 결과의 성능을 평가하였다.

하둡과 의미특징을 이용한 문서요약 (Document Summarization using Semantic Feature and Hadoop)

  • 김철원
    • 한국정보통신학회논문지
    • /
    • 제18권9호
    • /
    • pp.2155-2160
    • /
    • 2014
  • 본 논문은 하둡 기반의 분산병렬처리에 의한 문서의 의미특징을 추출하고, 추출된 의미특징을 이용하여 문서를 요약하는 새로운 방법을 제안한다. 제안된 방법은 문서요약에 비음수 분해된 문서의 의미특징을 이용함으로써 문서의 내부 구조를 잘 표현 할 수 있다. 또한 하둡을 이용하여 빅데이터의 문서를 요약할 수 있다. 실험결과 제안방법이 단일 컴퓨터 환경에서 처리할 수 없는 대용량의 문서를 요약할 수 있음을 보인다.

Text Summarization on Large-scale Vietnamese Datasets

  • Ti-Hon, Nguyen;Thanh-Nghi, Do
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.309-316
    • /
    • 2022
  • This investigation is aimed at automatic text summarization on large-scale Vietnamese datasets. Vietnamese articles were collected from newspaper websites and plain text was extracted to build the dataset, that included 1,101,101 documents. Next, a new single-document extractive text summarization model was proposed to evaluate this dataset. In this summary model, the k-means algorithm is used to cluster the sentences of the input document using different text representations, such as BoW (bag-of-words), TF-IDF (term frequency - inverse document frequency), Word2Vec (Word-to-vector), Glove, and FastText. The summary algorithm then uses the trained k-means model to rank the candidate sentences and create a summary with the highest-ranked sentences. The empirical results of the F1-score achieved 51.91% ROUGE-1, 18.77% ROUGE-2 and 29.72% ROUGE-L, compared to 52.33% ROUGE-1, 16.17% ROUGE-2, and 33.09% ROUGE-L performed using a competitive abstractive model. The advantage of the proposed model is that it can perform well with O(n,k,p) = O(n(k+2/p)) + O(nlog2n) + O(np) + O(nk2) + O(k) time complexity.

언어 분석 자질을 활용한 인공신경망 기반의 단일 문서 추출 요약 (Single Document Extractive Summarization Based on Deep Neural Networks Using Linguistic Analysis Features)

  • 이경호;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권8호
    • /
    • pp.343-348
    • /
    • 2019
  • 최근의 문서요약 시스템은 인공신경망을 이용한 End-to-End 방식이 주류를 이루고 있다. 이러한 시스템은 인간의 자질 추출 과정이 필요 없으며 데이터 중심의 접근 방법을 채택한다. 그러나 기존의 관련 연구들은 품사 정보, 개체명 정보, 단어의 빈도 정보와 같은 언어 분석 자질이 중요 문장을 선택하여 요약을 작성하는데 유용함을 보여왔다. 본 연구에서는 기존의 언어 분석 자질을 활용하여 인공신경망을 기반으로 한 단일 문서의 추출 요약 시스템을 제안한다. 언어 분석 자질의 유용성을 보이기 위해 자질을 사용하는 모델과 사용하지 않는 모델을 비교하였다. 실험 결과 자질을 사용하는 모델이 그렇지 않은 모델에 비해 약 0.5점의 Rouge-2 F1점수 향상을 보였다.

워드 임베딩 클러스터링을 활용한 리뷰 다중문서 요약기법 (Multi-Document Summarization Method of Reviews Using Word Embedding Clustering)

  • 이필원;황윤영;최종석;신용태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.535-540
    • /
    • 2021
  • 다중문서는 하나의 주제가 아닌 다양한 주제로 구성된 문서를 의미하며 대표적인 예로 온라인 리뷰가 있다. 온라인 리뷰는 정보량이 방대하기 때문에 요약하기 위한 여러 시도가 있었다. 그러나 기존의 요약모델을 통해 리뷰를 일괄적으로 요약할 경우 리뷰를 구성하고 있는 다양한 주제가 소실되는 문제가 발생한다. 따라서 본 논문에서는 주제의 손실을 최소화하며 리뷰를 요약하기 위한 기법을 제시한다. 제안하는 기법은 전처리, 중요도 평가, BERT를 활용한 임베딩 치환, 임베딩 클러스터링과 같은 과정을 통해 리뷰를 분류한다. 그리고 분류된 문장은 학습된 Transformer 요약모델을 통해 최종 요약을 생성한다. 제안하는 모델의 성능 평가는 기존의 요약모델인 seq2seq 모델과 ROUGE 스코어와 코사인 유사도를 평가하여 비교하였으며 기존의 요약모델과 비교하여 뛰어난 성능의 요약을 수행하였다.

단일문서와 복수문서 자동요약의 특성에 따른 기능 분석 (Analysis on Automatic Summarization Functions of the Single Document and the Multi Documents)

  • 최상희
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2003년도 제10회 학술대회 논문집
    • /
    • pp.303-312
    • /
    • 2003
  • 요약은 원문의 주제를 파악하여 원문의 축약판을 만들어 이용자에게 제공하는 중요한 정보 생산 과정이다. 최근 이용자에게 제공되는 정보량이 급증하면서 자동 요약에 대한 필요성이 더욱 증가하고 있으며 단일문서의 내용을 파악하는 도구로써 활용되던 요약이 문서집합의 내용을 파악하는 도구 및 새로운 정보생성 수단으로 그 기능을 넓혀가고 있다. 본 논고에서는 자동요약의 기본 개념과 요약대상의 문서 수에 따른 요약 특성 및 기능을 고찰하였다.

  • PDF

사건중심 뉴스기사 자동요약을 위한 사건탐지 기법에 관한 연구 (A Study on an Effective Event Detection Method for Event-Focused News Summarization)

  • 정영미;김용광
    • 정보관리학회지
    • /
    • 제25권4호
    • /
    • pp.227-243
    • /
    • 2008
  • 이 연구에서는 사건중심 뉴스기사 요약문을 자동생성하기 위해 뉴스기사들을 SVM 분류기를 이용하여 사건 주제범주로 먼저 분류한 후, 각 주제범주 내에서 싱글패스 클러스터링 알고리즘을 통해 특정한 사건 관련 기사들을 탐지하는 기법을 제안하였다. 사건탐지 성능을 높이기 위해 고유명사에 가중치를 부여하고, 뉴스의 발생시간을 고려한 시간벌점함수를 제안하였다. 또한 일정 규모 이상의 클러스터를 분할하여 적절한 크기의 사건 클러스터를 생성하도록 수정된 싱글패스 알고리즘을 사용하였다. 이 연구에서 제안한 사건탐지 기법의 성능은 단순 싱글패스 클러스터링 기법에 비해 정확률, 재현율, F-척도에서 각각 37.1%, 0.1%, 35.4%의 성능 향상률을 보였고, 오보율과 탐지비용에서는 각각 74.7%, 11.3%의 향상률을 나타냈다.