• Title/Summary/Keyword: Single Clinching

Search Result 3, Processing Time 0.018 seconds

Influence of Friction Between Materials on the Axial Direction Pull Force in Single Clinching (싱글 클린칭 공정에서 소재간 마찰이 축방향 분리력에 미치는 영향)

  • Lee, D.W.;Sekar, R.;Lee, C.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 2021
  • In this paper, a parametric study on the influence of friction between materials on pull force in single clinching is conducted using an axisymmetric elasto-plastic finite element method and law of Coulomb friction. An appropriate finite element analysis model is given, which minimizes the effect of the material model and numerical factors including the number of quadrilateral finite elements and blank radius. It is emphasized that the elasto-plastic material model should be employed because the elastic deformation of the internal region is affected more by the pull force. It has been shown that the pull force increases as friction coefficient increases and that the optimized friction coefficient is around 0.4, which is qualitatively comparable with its theoretical value. When the friction coefficient reaches 0.5 in the example studied, the neck fracture is predicted.

A Study on the Forming Characteristics of Clinching Joint Process (크린칭 접합의 성형특성에 관한 연구)

  • Jayasekara, V.R.;Noh, J.H.;Hwang, B.B.;Ham, K.C.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.603-613
    • /
    • 2007
  • This paper is concerned with joining of thin metal sheets by single stroke clinching process. This method has been used in sheet metal work as it is a simple process and offers the possibility of joining similar-dissimilar thin sheet metals. Clinching generates a joint by overlapping metal sheets deforming plastically by punching and squeezing sequence. AA 5754 aluminum alloy of 0.5 mm thick sheets have been selected as a modal material and the process has been simulated under different process conditions and the results have been analyzed in terms of the quality of clinch joints which are influenced mainly by tool geometries. The rigid-plastic finite element method is applied to analyses in this paper. Analysis is focused mainly on investigation of deformation and material flow patterns influenced by major geometrical parameters such as die diameter, die depth, groove width, and groove corner radius, respectively. To evaluate the quality of clinch joints, four controlling or evaluation parameters have been chosen and they are bottom, neck thickness of bottom and top sheets, and undercut thickness, respectively. It has been concluded from the simulation results that the die geometries such as die depth and diameters are the most decisive process parameters influencing on the quality of clinch joints, and the bottom thickness is the most important evaluation parameter to determine if the quality of clinch joints satisfies the demand for industrial application.

Characteristic of Mechanical Clinching for Al5052 to High-Strength Steels (Al5052 합금소재와 고장력강판의 이종재료 클린칭 접합특성)

  • Lee, Chan-Joo;Lee, Sang-Kon;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.997-1006
    • /
    • 2010
  • For manufacturing modern cars, so-called multi-materials, such as aluminum alloy with high-strength steels, are used. For obtaining such materials, a new joining method is required to achieve the multi-material design. Mechanical clinching is one of joining methods used to join the dissimilar materials. The objective of this study is to investigate the characteristics of mechanical clinching of Al5052 alloy to high-strength steels (SPFC440, 590, 780). Using FE-analysis and clinching experiment, the joinability of Al5052 alloy to high-strength steel is evaluated by geometrical shape of mechanical clinched joint, such as neck-thickness and undercut. Further, the joint strength is evaluated by performing a single-lap shear test. The upper high-strength steel SPFC780 was not clinched because of the necking of the upper sheet. The joint strength increased with increasing strength of the upper sheet. For the lower high-strength steel sheet, the joinability and joint strength decreased with increasing strength of the lower sheet.