• Title/Summary/Keyword: Single Cell Test

Search Result 355, Processing Time 0.026 seconds

VARIOUS NIR SAMPLE PRESENTATIONS FOR AGRICULTURAL PRODUCTS SUCH AS INTACT FRUITS, SINGLE GRAINS, VEGETABLE JUICE, MILK AND THE OTHERS

  • Kawano, Sumio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1021-1021
    • /
    • 2001
  • Sample presentation, which means how to set samples to an NIR instrument, is very important in Near Infrared (NIR) Spectroscopy. When sample presentation is not suitable for the samples that you use, very good spectra can not be obtained even if you use a sophisticated NIR instrument. In my presentation, various NIR sample presentations for agricultural products such as intact fruits, single grains, vegetable juice and the others will be explained. In case of peaches with thin peel, the fiber optics of Interactance can be used. However, the fiber optics are not suitable for oranges with relatively thick peel. In this case, transmittance method is useful. As for a small sample such as single grains, a specially designed cell is needed. The cell in transmittance mode has been developed and then applied to single kernels of rice and soybean. In this case we also used the fiber optics. As regards liquid type of sample, a cuvette cell made of quartz in transmittance mode is popular. However, it is time-consuming to wash and dry it. In order to compensate this disadvantage the sample presentation using normal test tubes as sample cells have been developed and applied to milk, rumen juice and urine of a milking cow. An individual test tube can be used for each sample if you use the calibration equation with sample cell compensation. The test tube cell has also been applied to spinach juice for determination of undesirable constituents. It is concluded that sample presentation is most important for NIR Spectroscopy.

  • PDF

Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate (CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교)

  • Paik, Jung-Ho;Han, Won-Kyu;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

Performance Evaluation of Platinum Dispersed Self-humidifying Polymer Electrolyte Membrane Prepared by Using RF Magnetron Sputter

  • Kwak, Sang-Hee;Yang, Tae-Hyun;Kim, Chang-Soo;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.118-122
    • /
    • 2003
  • The performance evaluation on Pt loading in the self-humidifying polymer electrolyte membrane for Polymer Electrolyte Mem-Brane Fuel Cell(PEMFC) was investigated by using single cell test and measurement of membrane resistance. The self-humidifying membrane comprised two membranes made of perfluorosulfonylfluroride copolymer resin and fine Pt particles tying between them, coated by sputtering. From the results of performance characteristics of self-humidifying membrane cell with different Pt loading, a single cell using self-humidifying membrane with 0.15 mg/$\textrm{cm}^2$ Pt loading showed better performance than that with the others over entire current density. Also, a single cell with 0.15 mg/$\textrm{cm}^2$ Pt loading had a lower resistance value than the other cells under externally nonhumidifying condition. It is indicated that the water produced in the membrane cell with 0.15 mg/$\textrm{cm}^2$ Pt loading showed a higher provision to maintain ionic conductivity of the membrane than the other cells. The optimum amount of Pt particles embedded in the membrane for self-humidifying PEMFC was determined to be about 0.15 mg/$\textrm{cm}^2$.

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

Single Cell Stacked Planar Type SOFC Assembled Using a Ag-Current Collector (Ag 집전체를 적용한 평판형 SOFC 단전지)

  • Cho, Nam-Ung;Hwang, Soon-Cheol;Lee, In-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.720-726
    • /
    • 2007
  • Current collectors of SOFC play a significant role on the performance of power generation. In this study a single cell stacked SOFC was assembled using Ag-mesh as a cathode current collector, and evaluated its performance. No gas leakages of the single cell stack occurred in the tests of gas detection and OCV measurement. The OCV and initial power of the stack were 1.09V and $0.45W/cm^2$, respectively, under the flow rates of air at 2,500 cc/min and $H_2$ at 1,000 cc/min at the test temperature of $750^{\circ}C$. A degradation rate of 44.0% was measured during the prolonged time of 307 h. The relatively low durability of the tested single cell stack was found to be the evaporation of Ag-mesh at the current corrector.

Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis (수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가)

  • Jun Ho, Park;Kwang Seop, Im;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.496-513
    • /
    • 2022
  • In this study, we sought to verify the applicability of anion exchange membrane water electrolysis system using FAA-3-50, Neosepta-ASE, Sustainion grade T, and Fujifilm type 10, which are commercial anion exchange membranes. The morphology of the commercial membranes and the elements on the surface were analyzed using SEM/EDX to confirm the distribution of functional groups included in the commercial membranes. In addition, mechanical strength and decomposition temperature were measured using UTM and TGA to check whether the driving conditions of the water electrolyte were satisfied. The ion exchange capacity and ion conductivity were measured to understand the performance of anion exchange membranes, and the alkaline resistance of each commercial membrane was checked and durability test was performed because they were driven in an alkaline environment. Finally, a membrane-electrode assembly was manufactured and a water electrolysis single cell test was performed to confirm cell performance at 60℃, 70℃, and 80℃. The long-term cell test was measured 20 cycles at other temperatures to compare water electrolysis performance.

Single Cell Gel Electrophoresis (comet assay) to Detect DNA Damage and Apoptosis in Cell Level (DNA damage와 Apoptosis를 정량화하는 단세포전기영동법)

  • 류재천;김현주;서영록;김경란
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1997
  • The single cell gel electrophoressis(SCGE) assay, also known as the comet assay, is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakage in mammalian cells. The SCGE or comet assay is a promising test for the detection of DNA damage and repair in individnal cells. It has widespread potential applications in DNA damage and repair studies, genotoxicity testing and biomonitoring. In this microgel electrophoresis technique, cells are embedded in agarose gel on microscope slides, iysed and electrophoresed under alkaline conditions. Cells with increased DNA damage display increased migration of DNA from the nucleus towards the anode. The length of DNA migration indicates the amount of DNA breakage in the cell. The comet assay is also capable of identifying apoptotic cells which contain highly fragmented DNA. Here we review the development of the SCGE assay, existing protocols for the detection and analysis of comets, the relevant underlying principles determining the behaviour of DNA and the potential applications of the technique.

  • PDF

Yeast Single-Cell Protein Production Using Potato Processing Waste Water

  • Park, Eung-Yeal;Crawford, Don-L.;Korus, Roger-A.;Heimsch, Richard-D.
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.212-219
    • /
    • 1991
  • Four species of yeast, Saccharomyces cerevisiae, Candida utilis, Saccharomycopsis flbuligera, and Schwanniomyces castellii were evaluated for their ability to bioconvert potato processing waste water into microbial protein and the resulting single-cell proteins were evaluated as protein sources for rainbow trout, using in vitro analyses. The studies indicated that Schwanniomyces castellii, which utilizes starch dircetly and converts it into cell mass efficiently, was suitable for the bioconversion. In the single-stage continuous bioconversion, the yield S. castellii cell mass, which contained approximately 37% protein, was 77%, at dilution rate 0.25 $h^{-1}$. Reduction of total carbohydrate was 81%. During batch fermentations, cell mass yield was about 72% and total carbohydrate reduction was 81%. Among the yeasts tested, S. castellii possessed the most fragile cell wall and had a favorable amino acid profile for salmonid fish; protein score of 86% (Met). In an in vitro pepsin digestibility test 80% digestibility (23~38% above control) was observed when cells were pre-heated in a steam bath for 30 min. Results presented should be regarded as being preliminary in nature because they were derived from single experiments.

  • PDF

Performance of Single Cells with Anode Functional Layer for SOFC

  • Choi, Jin-Hyeok;Lee, Tae-Hee;Park, Tae-Sung;Yoo, Young-Sung
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • To improve the performance of the anode-supported Solid Oxide Fuel Cell (SOFC) which can be operated at an intermediate temperature, the functional layer (FL) is introduced on a anode substrate. And the scandia-stabilized zirconia (ScSZ) and samaria-doped ceria (SDC) which have higher ionic conductivity and better chemical stability than yttria-stabilized zirconia (YSZ) are used as material for the anode FL with the Ni, The fabrication process of anode-supported single cell with the anode FL was established and the power density of those was evaluated. As a result, the sample with anode FL (Ni-YSZ) has higher power density than normal cell. The single cell which was composed of the FL (Ni-YSZ) and electrolyte (YSZ) showed about $550mW/cm^2$ of the maximum power density at $650^{\circ}C$ and $1430mW/cm^2$ at $750^{\circ}C$ respectively, In case of the single cell using the ScSZ and SDC as anode FL, the performance of samples decreased rapidly and those showed unstable voltage during long-term test. In case of using methane as a fuel, the cell performance with each FL decreased comparing with $H_2$ fuel. In the region of a high current density, there are large concentration polarizations.

  • PDF

Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell (단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터)

  • Lee, Joo-Seung;Hwang, Yun-Seong;Kang, Sung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.