• Title/Summary/Keyword: Single Cell Protein

Search Result 483, Processing Time 0.033 seconds

Molecular Cloning, Characterization and Expression Analysis of an ILF2 Homologue from Tetraodon nigroviridis

  • Wang, Hui-Ju;Shao, Jian-Zhong;Xiang, Li-Xin;Shen, Jia
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.686-695
    • /
    • 2006
  • Interleukin-2 enhancer binding factor 2 (ILF2) was reported to regulate transcription of interleukin-2 (IL-2), a central cytokine in the regulation of T-cell responses. This property of ILF2 was well characterized in human and mammals, but little is known in bony fish. In this paper, an ILF2 homologue was cloned and well characterized from Tetraodon nigrovirid is for the further investigation of the function of ILF2 in bony fish. The full-length Tetraodon ILF2 cDNA was 1380 bp in size and contained an open reading frame (ORF) of 1164 bp that translates into a 387 amino-acid peptide with a molecular weight of 42.9 kDa, a 5' untranslated region (UTR) of 57 bp, and a 3' UTR of 159 bp containing a poly A tail. The deduced peptide of Tetraodon ILF2 shared an overall identity of 58%~93% with other known ILF2 sequences, and contained two N-glycosylation sites, two N-myristoylation sites, one RGD cell attachment sequence, six protein kinase C phosphorylation sites, one amino-terminal RGG-rich single-stranded RNA-binding domain, and a DZF zinc-finger nucleic acid binding domain, most of which were highly conserved through species compared. Constitutive expression of Tetraodon ILF2 was observed in all tissues examined, including gill, gut, head kidney, spleen, liver, brain and heart. The highest expression was detected in heart, followed by liver, head kidney and brain. Stimulation with LPS did not significantly alter the expression of Tetraodon ILF2. Gene organization analysis showed that the Tetraodon ILF2 gene have fifteen exons, one more than other known ILF2 genes in human and mouse. Genes up- and down-stream from the Tetraodon ILF2 were Rpa12, Peroxin-11b, Smad4, Snapap and Txnip homologue, which were different from that in human and mouse.

Immunomodulatory Effect of Aqueous Extracted Zingiberis Rhizoma on Cyclophosphamide - Induced Immune Suppression (건강 열수추출액이 Cyclophosphamide에 의해 유도된 면역억제조절에 미치는 영향)

  • Lee, Young-Sun;Lee, Geum-Hong;Kwon, Young-Kyu;Park, Jong-Hyun;Shin, Sang-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.485-490
    • /
    • 2007
  • Zingiberis rhizoma(ZB) has been used to treat a various condition and disease in many traditional preparation. The present study was conducted to investigate the immunomodulatory effect on cyclophosphamide(CY)-induced immunotoxicity of aqueous-extracted ZB(ZBE) using in vitro and in vivo experiment. In vitro experiment, the mouse spleen cells proliferation and nitric oxide(NO) production in RAW 264.7 mouse macrophage cells were investigated. ZBE enhanced mitogenic activity in mouse spleen cells. The suppression of CY-induced mouse speen cell proliferation was significantly restored by ZBE treatment. ZBE inhibited NO production, iNOS mRNA and protein levels in LPS-stimulated RAW 264.7 cells. In vivo experiment, ZBE was orally administrated(single dose of 150mg/kg for 12 days) and CY i.p(150mg/kg) injected to SD rats. In CY alone injected group, body weights and spleen weights, and a various hematological parameters were reduced when compared with control group, whereas those values were increased by concomitant treatment of CY and ZBE when compared with CY alone injected group. These results indicated that ZBE can modulate CY-induced immune suppression through immune cell proliferation, the regulation of NO production and the inhibition of CY-induced immunotoxicity.

Effect of irradiation on the Porphyromonas gingivalis (방사선조사가 Porphyromonas gingivalis에 미치는 영향)

  • Lee, Chang-Hwan;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Purpose: The aim of this study was to observe a direct effect of irradiation on the periodontopathic Porphyromonas gingivalis (P. gingivalis). Materials and Methods: P. gingivalis 2561 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Changes in viability and antibiotic sensitivity, morphology, transcription, and protein profile of the bacterium after irradiation were examined by pour plating method, disc diffusion method, transmission electron microscopy, RT-PCR, and immunoblot, respectively. Results: Viability of irradiated P. gingivalis drastically reduced as irradiation dose was increased. Irradiated P. gingivalis was found to have become more sensitive to antibiotics as radiation dose was increased. With observation under the transmission electron microscope, the number of morphologically abnormal cells was increased with increasing of irradiation dose. In RT-PCR, decrease in the expression of fimA and sod was observed in irradiated P. gingivalis. In immunoblot, change of profile in irradiated P. gingivalis was found in a number of proteins including 43-kDa fimbrillin. Conclusion: These results suggest that irradiation may affect the cell integrity of P. gingivalis, which is manifested by the change in cell morphology and antibiotic sensitivity, affecting viability of the bacterium.

  • PDF

Analysis of the relationship between the end weight trait and the gene ADGRL2 in purebred landrace pigs using a Genome-wide association study

  • Kang, Ho-Chan;Kim, Hee-Sung;Lee, Jae-Bong;Yoo, Chae-Kung;Choi, Tae-Jeong;Lim, Hyun-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.238-247
    • /
    • 2018
  • The overall consumption of meat is increasing as the level of national income increases. The end weight is a trait closely associated with dressed meat. Genome-wide association study (GWAS) is an effective method of analyzing genetic variation and gene identification associated with a number of natural alternative traits because it can detect variations. So this paper did a GWAS analysis to identity the location on the genome related to the end weight in purebred landrace pigs and to explore the relevant candidate gene. This study identified a significant single nucleotide poly morphism (SNP) marker in chromosome 6 (ASGA0029422, $p=1.22{\times}10^{-6}$). Adhesion G protein-coupled receptor L2 (ADGRL2) was found to be the candidate gene at the identified SNP marker location. ADGRL2 genes have been found to be associated with cell development in relation to the external and internal environment of a cell. In addition, genotype and statistical analyses were done on nine variations on the exon of ADGRL2. The results show that the SNP marker (ASGA0029422, $p=1.32{\times}10^{-6}$) was significant, but the significance of the nine variations on the ADGRL2 exon was not verified. However, by performing further experiments and functional studies on other SNPs showing possible genetic ADGRL-Exon mutations, objects with high associations of high-end weights can be selected.

Production and Characteristics of Cellulase from Sporocytophaga congregata and Mixed Culture with Yeast (Sporocytophaga congregata에 의(依)한 Cellulase 생산(生産) 및 그 효소특성(酵素特性)과 효모(酵母)와의 혼합배양(混合培養))

  • Kim, Chang-Jin;Kim, Sang-Soon;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.36-43
    • /
    • 1986
  • In order to produce cellulosic single cell protein from the cellulose, 163 strains of cellulose assimilating bacteria were isolated from 95 sources and one of them was screened by its strong cellulose assimilating activity. and was identified as Sporocytophaga congregate A-7. The optimum temperature and pH for cellulase production were $30^{\circ}C$ and 6.0, and the optimum temperature, pH and heat stability of the enzyme were $50^{\circ}C$, 7.0 and below $55^{\circ}C$. When the bacteria was cultured in fermentor, the specific growth rate was $0.034hr^{-1}$ and when the bacteria was mixed cultured with Candida guilliermondii var. guilliermondii, the specific growth rate of the bacteria and yeast were $0.06hr^{-1}$ and $0.08hr^{-1}$ respectively and total cell dry weight was $4{\sim}5g/l$.

  • PDF

In vitro effects of monophosphoryl lipid A and Poly I:C combination on equine cells

  • Dong-Ha Lee;Eun-bee Lee;Jong-pil Seo ;Eun-Ju Ko
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.37.1-37.14
    • /
    • 2023
  • Background: Toll-like receptor (TLR) agonists have been used as adjuvants to modulate immune responses in both animals and humans. Objectives: The objective of this study was to evaluate the combined effects of the TLR 4 agonist monophosphoryl lipid A (MPL) and the TLR 3 agonist polyinosinic:polycytidylic acid (Poly I:C) on equine peripheral blood mononuclear cells (PBMCs), monocyte-derived dendritic cells (MoDCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs). Methods: The PBMCs, MoDCs, and BM-MSCs collected from three mixed breed horses were treated with MPL, Poly I:C, and their combination. The mRNA expression of interferon gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-12p40, tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) was determined using real-time polymerase chain reaction. Results: The combination of MPL and Poly I:C significantly upregulated immunomodulatory responses in equine cells/ without cytotoxicity. The combination induced greater mRNA expression of pro-inflammatory cytokines IFN-γ and IL-6 than MPL or Poly I:C stimulation alone in PBMCs. In addition, the combination induced significantly higher mRNA expression of IL-1β, IL-6, and IL-12p40 in MoDCs, and IL-8, MCP-1, and VEGF in BM-MSCs compared to stimulation with a single TLR agonist. Conclusions: The combination of MPL and Poly I:C can be used as a potential adjuvant candidate for vaccines to aid in preventing infectious diseases in horses.

Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis

  • Yan Liang;Huimin Wang;Jin Chen;Lingyan Chen;Xiaoyong Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.11a
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy-${\Delta}^{12, 14}$-prostaglandin $J_2$ (15-deoxy-$PGJ_2$), a naturally occurring ligand activates the peroxisome proliferator-activated $receptor-{\gamma}(PPAR-{\gamma}$). Activation of $PPAR-{\gamma}$ has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-$PGJ_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-$PGJ_2$ (0.2 to 1.6 ${\mu}M$) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/ml). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-$PGJ_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-$PGJ_2$(0.8 ${\mu}M$) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-$PGJ_2$ on the expression of p38 MAP kinase and activation of AP-1, The promoting ability of 15-deoxy-$PGJ_2$ did not occur through $PPAR-{\gamma}$, as synthetic PPAR-${\gamma}$ agonist andantagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), $PPAR-{\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and $PGE_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of f 5-deoxy-$PGJ_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-$PGJ_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 single pathway may be important in the promoting activity of 15-deoxy-$PGJ_2$ cells.

  • PDF

Production of Single Cell Protein on Petroleum Hydrocarbon -IV. On the Continuous Fermentation and Some Cultivation Conditions for Candida tropicalis KIST 351- (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 -IV. Candida tropicalis KIST 351의 연속배양 및 몇가지 조건에 관하여-)

  • Lee, Yong-Hyun;Pyun, Yoo-Ryang;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.200-205
    • /
    • 1972
  • Effects of several different petroleum fractions (LGO, HGO, VGO, Diesel oil, SP(E), HGO-wax, L/M-wax), stepwise addition of calculated amounts of HGO at defined intervals, recycling of spent media on cell growth of Candida tropicalis KIST 351 were studied using $2.5{\ell}$ fermenter by batch process. In addition, continuous cultivation of the yeast was also performed in the light of biomass production using $28{\ell}$ fermenter with LGO. 1) Cell concentration, yield on the basis of gas oil and n-paraffin with the petroleum fractions were in the range of $11{\sim}15g/{\ell}$, $10{\sim}12%$ and $77{\sim}82%$, respectively. 2) By stepwise addition of the gas oil, cell concentration and yield on the oil were increased up to 18.9 g/land 13%, respectively. 3) Spent medium slowed emulsifying ability of hydrocarbon and stimulating effect on the cell growth. Without additional supplementation of $Mg^{++}$ up to 20% of spent medium could be reused, while by adding of the $Mg^{++}$, 50% of medium could be recycled. 4) Optimum condition of continuous cultivation for biomass production was attained at the dilution rate of $D=0.1{\sim}0.125\;hr^{-1}$. Maximum yield coefficient on consumed n-paraffin was 0.94 at $D=0.1\;hr^{-1}$, however, 24% of supplied n-paraffin in the media was not utilized at this dilution rate.

  • PDF

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF