• Title/Summary/Keyword: Sinetrol-XPur

Search Result 2, Processing Time 0.02 seconds

Effects of Sinetrol-XPur on Leptin-Deficient Obese Mice and Activation of cAMP-Dependent UCP-2 (Leptin 유전자 결핍 동물모델을 이용한 시네트롤(Sinetrol-XPur)의 항비만 효과와 cAMP를 통한 UCP-2 활성화 기전 연구)

  • Yoo, Jae Myeong;Lee, Minhee;Kwon, Han Ol;Choi, Sei Gyu;Bae, Mun Hyoung;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2016
  • The present study investigated the effect of Sinetrol-XPur (polyphenolic Citrus spp. and Paullinia cupana Kunth dry extract) and defined the action mode for cyclic adenosine monophosphate (cAMP)-dependent uncoupling protein (UCP)-2 activation. Leptin-deficient obese mice were treated with two different doses, 100 mg/kg body weight (BW) and 300 mg/kg BW of each AIN93G supplement, for 7 weeks. Treatment of obese mice with both low and high doses of Sinetrol-XPur significantly reduced body weight gain compared to control obese mice. White adipose tissue weight of mice was reduced by 30.96% in high dose-supplemented groups. Serum total cholesterol and triglyceride were reduced by a high dose of Sinetrol-XPur by 20.02% and 30.96%, respectively. Serum level of high density lipoprotein (HDL) was significantly increased by treatment with both doses, as the ratio of HDL to low density lipoprotein increased by 138.78% and 171.49%, respectively. Regarding expression of biochemical factors related to lipid metabolism, fatty acid synthase significantly decreased and UCP-2 increased upon treatment with a high dose of Sinetrol-XPur, but there was no significant difference in lipoprotein lipase and hormone-sensitive lipase. To define cellular mechanism, intracellular cAMP levels in 3T3-L1 adipocytes significantly increased in a dose-dependent manner over the range of $50{\sim}250{\mu}m/mL$. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine clearly blocked cAMP, suggesting that Sinetrol-XPur promotes lipolysis of adipocytes through inhibition of cAMP-dependent PDE, resulting in induction of cAMP response element binding protein and UCP-2. These results suggest that Sinetrol-XPur supplementation is a viable option for reducing body weight and fat by improving serum lipid profiles and genetic expression of lipid metabolic factors, especially activation of cAMP-dependent UCP-2.

The Effects of Sinetrol-XPur on Lipolysis of Leptin-Deficient Obese Mice (시네트롤(Sinetrol-XPur)의 섭취가 Leptin 유전자 결핍 동물 모델의 지방분해에 미치는 영향)

  • Lee, Minhee;Kwon, Han Ol;Choi, Sei Gyu;Bae, Mun Hyoung;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.389-393
    • /
    • 2017
  • This study investigated the effects of Sinetrol-XPur (polyphenolic Citrus spp. and Paullinia cupana Kunth dry extract) on lipolysis using leptin-deficient obese (ob/ob) mice. Obese mice were treated with two different doses, 100 mg/kg body weight (B.W.) and 300 mg/kg B.W. in each AIN93G supplement, for 7 weeks. Body weight gain in obese mice treated with both low and high doses of Sinetrol-XPur was reduced compared with control obese mice. Abdominal and visceral adipose tissue weight of mice were reduced in high dose supplemented groups. Epididymal adipose tissue weight was reduced in both low and high dose supplemented groups by 18.27% and 41.05%, respectively. Phosphodiesterase 3B (PDE3B) mRNA levels decreased upon Sinetrol supplementation in adipose tissue of ob/ob mice, whereas A kinase anchor protein 1 (AKAP1), adipose triglyceride lipase (ATGL), and perilipin (PLIN) mRNA levels increased. These results suggest that Sinetrol-XPur supplementation partially stimulates lipolysis through reduction of PDE3B and induction of AKAP1, ATGL, and/or PLIN gene expression, resulting in reduced body and white adipose tissue weight.