• 제목/요약/키워드: Sine wave fin

검색결과 3건 처리시간 0.017초

사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 성능 (Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes)

  • 최병남;풍익;심현민;김내현
    • 설비공학논문집
    • /
    • 제25권5호
    • /
    • pp.279-288
    • /
    • 2013
  • Heat transfer and pressure drop characteristics of fin-and-tube heat exchangers having sine wave fins and oval tubes were investigated. Oval tubes having an aspect ratio of 0.6 were made, by deforming 12.7 mm round tubes. Twelve samples, having different fin pitch and tube row, were tested. The effect of fin pitch on the j and f factors was negligible. The effect of the tube row on the j factor, however, was different from that of common fin-and-tube heat exchangers having plain fins and round tubes. The highest j factor was obtained for a two-row configuration, while the lowest one was obtained for a one-row configuration. A possible reason was attributed to the flow mixing characteristics of the sine wave channel of the present geometry. Comparison with a plain fin-and-tube heat exchanger having 15.88 mm O. D. round tube reveals that the present oval fin-and-tube heat exchanger shows generally superior thermal performance, except for the one-row configuration.

사인 웨이브 핀과 타원관으로 구성된 핀-관 열교환기의 공기측 습표면 성능 (Wet Surface Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2415-2423
    • /
    • 2015
  • 본 논문은 12.7mm 원관을 변형하여 만든 세장비 0.6(짧은 직경 10.0mm, 긴 직경 16.5mm)의 타원관이 적용된 사인 웨이브 핀-관 열교환기의 습표면 공기측 성능실험에 관한 것이다. 핀 핏치와 열 수를 변화시켜 총 12개의 시료에 대하여 실험을 수행하였다. 타원관에서 핀 핏치 변화에 따른 j, f 인자의 영향은 미미 하였으나, 열수에 따라서는 1row에서 j인자가 가장 낮았다 (가장 높은 2row의 81%). 하지만 원관에서는 1row에서 가장 높게 나타나는 차이점을 보였다. 이는 타원관에 적용된 사인 웨이브 채널의 유동 특성에 기인한 것으로 판단된다. 원관 열교환기와 $j/f^{1/3}$값을 비교한 결과 1열을 제외하고는 타원관 열교환기의 전열성능이 우수함을 알 수 있다. 즉, 타원관 열교환기의 $j/f^{1/3}$값이 원관의 값보다 2열에서 1.6~2.5 배, 3열에서 1.4~2.4 배, 4열에서 1.2~1.8배 크게 나타났다.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.