• 제목/요약/키워드: Sine function

검색결과 174건 처리시간 0.023초

공기 스테이지의 형상 오차가 운동정밀도에 미치는 영향 (Effect of Shape Error of an Air Stage on Motion Precision)

  • 류대원;이재혁;박상신;김규하
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.68-74
    • /
    • 2020
  • In this study, the effect of the shape error of a guideway on the movement of a stage that uses an air bearing is analyzed. The shape error of moving parts supported by the air bearing is known not to affect the vibrations of moving parts as much as the magnitude of the shape error. This is called the "averaging effect." In this study, the effect of shape error on a guideway, as well as the averaging effect of an air-bearing system, is analyzed theoretically using a dynamic-analysis program. The dynamic-analysis program applies a commercially available code in COMSOL and solves the Reynolds equation between the stage and the guideway, along with the equation of motion of the stage. The stage is modeled as a two-degree-of-freedom system. The shape error is applied to the film thickness function in the form of a sine wave. The stage movement is analyzed using the fast Fourier transform process. The eccentricity and tilting are found to be proportional to the amplitude of the shape error of the guideway. Stage vibrations are less than 10% of the amplitude of the shape error on the guideway. This means that the averaging effect of the air bearing is verified quantitatively. Moreover, if the air supply position matches the shape error in the guideway, there is a notable change in eccentricity and tilting.

슬링(Sling) 시스템을 이용한 경부 안정화 운동 (Cervical stabilization exercise using the Sling system)

  • 권재확;조미주;박민철;김선엽
    • 대한정형도수물리치료학회지
    • /
    • 제8권2호
    • /
    • pp.57-71
    • /
    • 2002
  • Cervical pain is a rapid increase that is owing to a flexion-extension whiplash injury, unappropriated posture, chronical repetition injury from abdominal position of head and neck, excessive repeating work, chronical deficiency of excercise. Because of that is bring about muscle unbalance, tightness of cervical extensor muscle, weakness of cervical deep flexor muscles, instability of cervical region and reduction of proprioceptive sensor. Recent the role of muscle is more emphasized for preservation of sine stabilization. And cognition of integrated muscular system, importance for the operation and relation is increased to maintain stability of the motor system and pertinent function. Therefore we are going to introduce the sling exercise and stabilization exercise method for advanced efficient of cervical and upper limb and for the muscle strengthening to importance cervical stabilization through neurological program as control the reaction of cervical stabilization. Sling exercise therapy(SET) concept consists of a system of diagnosis and treatment. The system of diagnosis involves testing the muscle's tolerance through progressive loading in open and close kinetic chains. The SET system contains elements such as relaxation, increasing the range of movement, traction, training the stabilizing musculature, sensory-motor exercises, training in open and close kinetic chains, dynamic training of the mobilizing musculature, cardiovascular exercise, group exercise, personal exercise at home Sensory-motor training is an essential element of the SET concept. The emphasis is on closed kinetic chain exercise on an unstable surface, there by achieving optimum stimulation of the sensory-motor apparatus.

  • PDF

2차원 상의 음원위치 추정을 위한 효율적인 영역분할방법 (An efficient space dividing method for the two-dimensional sound source localization)

  • 김환용;최홍섭
    • 한국음향학회지
    • /
    • 제35권5호
    • /
    • pp.358-367
    • /
    • 2016
  • 음원의 위치를 찾는 SSL(Sound Source Localization)은 로봇과의 인터페이스, 화상회의, 스마트 자동차 등 여러 분야에서 꼭 필요한 기술이다. 일반적으로 음원의 위치 정보를 활용하는 기술들은 주로 측정 장치에 대한 음원의 각도 정보를 찾아서 이용하고 있다. 그러나 음원의 위치에 대한 각도를 추정할 때 이용하는 사인 역함수의 비선형적인 특성으로 추정된 각도에 오차가 발생하며, 이에 대한 방안으로 마이크가 담당하는 영역을 분할하는 방법이 제안되었다. 본 논문에서는 마이크 어레이 패턴에 따른 영역분할 방법을 제안하고 음원의 위치를 2차원상의 평면 좌표로 특정하는 방법으로 위치 추정 성능을 평가하였다. 실험에서 잡음에 강인한 GCC-PHAT(Generalized Cross Correlation Phase Transform) 방법을 사용했으며, 마이크 어레이의 패턴은 마이크 3개와 4개로 삼각형과 사각형 두 종류로 구성하였으며, 100개의 음성 데이터로 실험한 결과 실제 환경에서는 3개의 마이크 어레이를 사용해서는 영역 분할 해상도가 낮아서 음원의 위치를 정해진 특정 범위내로 추정하는데 실패했으나, 4개 마이크를 이용하여 해상도를 높였더니 위치추정 성공률이 67 %로 크게 향상됨을 확인할 수 있었다.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

Investigation of mean wind pressures on 'E' plan shaped tall building

  • Bhattacharyya, Biswarup;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제26권2호
    • /
    • pp.99-114
    • /
    • 2018
  • Due to shortage of land and architectural aesthetics, sometimes the buildings are constructed as unconventional in plan. The wind force acts differently according to the plan shape of the building. So, it is of utter importance to study wind force or, more specifically wind pressure on an unconventional plan shaped tall building. To address this issue, this paper demonstrates a comprehensive study on mean pressure coefficient of 'E' plan shaped tall building. This study has been carried out experimentally and numerically by wind tunnel test and computational fluid dynamics (CFD) simulation respectively. Mean wind pressures on all the faces of the building are predicted using wind tunnel test and CFD simulation varying wind incidence angles from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. The accuracy of the numerically predicted results are measured by comparing results predicted by CFD with experimental results and it seems to have a good agreement with wind tunnel results. Besides wind pressures, wind flow patterns are also obtained by CFD for all the wind incidence angles. These flow patterns predict the behavior of pressure variation on the different faces of the building. For better comparison of the results, pressure contours on all the faces are also predicted by both the methods. Finally, polynomial expressions as the sine and cosine function of wind angle are proposed for obtaining mean wind pressure coefficient on all the faces using Fourier series expansion. The accuracy of the fitted expansions are measured by sum square error, $R^2$ value and root mean square error.

Taylor 급수를 이용한 617 합금의 장시간 크리프 수명 예측 (Taylor Series-Based Long-Term Creep-Life Prediction of Alloy 617)

  • 윤송남;김우곤;박재영;김선진;김용완
    • 대한기계학회논문집A
    • /
    • 제34권4호
    • /
    • pp.457-465
    • /
    • 2010
  • 본 연구에서는 McVetty 와 Monkman-Grant 의 모델에 기초하여 만들어진 새로운 크리프 수명예측 모델인 Taylor 급수(T-S) 모델을 제안하였다. 본 모델은 회귀분석에서 발생하는 오차를 줄이기 위하여 McVetty 모델에서 sinh 함수를 Taylor 급수에 의해 변환한 후 첫 3 개항을 취한 것으로서 모델중의 상수 값은 통계학적 방법인 최대가능성 기법을 이용하여 결정되었다. T-S 모델을 이용하여 Alloy 617 의 크리프 수명을 예측한 결과 Eno, 지수함수 및 Larson-Miller(L-M) 방법에 비해 더 정확한 예측을 하는 것으로 나타났다. 또한 T-S 모델은 특정 온도에서 크리프 수명 예측을 할 수 있는 등온 T-S(IT-S) 모델로 표현될 수 있었으며, IT-S 모델은 Alloy 617 의 장시간 크리프 수명예측에서 가장 좋은 예측을 하는 것으로 나타났다.

공유메모리 프로토콜을 이용한 VXIbus 시스템 구현에 관한 연구 (A Study on Implementation of a VXIbus System Using Shared Memory Protocol)

  • 노승환;강민호;김덕진
    • 한국통신학회논문지
    • /
    • 제18권9호
    • /
    • pp.1332-1347
    • /
    • 1993
  • 기존의 계측기기는 기능에 따라 독립적으로 이루어져 사용자는 사용목적에 따라 각각의 계측기를 이용하여 원하는 계측 시스템을 구성하였다. 그러나 1980년대 후반 VXIbus는 다양한 계측장비를 각각 한장의 카드로 만들어 선택적으로 계측시스템을 구성하는것을 가능하게 하였다. VXIbus의 기본전인 통신 프로토콜에는 word serial 프로토콜이 있다 . 그러나 측정된 데이타의 양이 증가하게 되면 word serial 프로토콜로 인한 전체 시스템의 성능 저하를 가져오게 된다. 본 논문에서는 이러한 성능제한요소를 해결하기 위하여 공유(shared) 메모리 프로토콜을 제안하고, 기존의 word serial 프로토콜과 공유메모리 프로토콜을 GSPN(Generalized Stochastic Petri Net)를 이용하여 분석하였다. 분석한 결과 공유메모리 프로토콜이 word serial 프로토콜보다 성능이 우수함을 알 수 있었다. 또한 제안된 공유 메모리 구조를 갖는 VXIbus 시스템을 구현하였으며 사용된 계측기기로는 VXIbus인터페이스 모듈과 VMEbus 전용 신호처리모듈로 구성 된 FFT 분석 디바이스 그리고 신호발생 디바이스가 이용되었다. FFT 분석실험 결과 최대 80 KHz 입력신호에 대하여 정확하게 분석되었으며 이 결과는 기존의 FFT분석기의 결과와 잘 일치하였고, 신호발생 실험에서는 200 KHz에서 1.1GHz까지의 정현파 신호가 발생되었다.

  • PDF

배 골판지 포장상자의 진동특성 (Vibration Characteristics of Corrugated Fiberboard Boxes for Packages of Pears)

  • 김만수;정현모
    • Journal of Biosystems Engineering
    • /
    • 제27권5호
    • /
    • pp.391-398
    • /
    • 2002
  • During handling unitized products, they are subjected to a variety of environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization of pallets has been resulted in a reduction of the shock hazards. This has caused an increasing interest in research focused on vibration caused dam age. Damage to the product by the vibration most often occurs when a product or a product component has a natural frequency that falls within the range of the forcing frequencies of the particular mode of transportation being used. Transportation vibration is also a major cause of fruit and vegetable quality loss due to mechanical damage. This study was conducted to determine the vibration characteristics of the corrugated fiberboard bones for packages of pears, and to investigate the degree of vibration injury of the pears in the boxes during the simulated transportation environment. The vibration tests were performed on an electrohydraulic vibration exciter. The input acceleration to exciter was fixed at 0.25 G for a single container resonance test and 0.5 G for the vertical stacked container over the frequency range from 3 to 100 Hz. Function generator (HP-33120A) was connected by wire to the vibration exciter for controlling the input acceleration at a continuous logarithmic sweep rate of 1.0 octave per min. The peak frequency and acceleration on the single box test were 22.02 Hz, 1.5425 G respectively, and these values on the vertical stacked boxes were observed from the bottom box 19.02, 18.14, 16.62 and 15.40 Hz and 2.2987, 3.7654. 5.6087, and 7.9582 G, respectively. The pear in the bottom box had a slightly higher damage level than the fruit packed in the other stacked boxes. It is desirable that the package and transportation system has to be so designed that 15∼20 Hz frequency will not occur during the transportation environment.

주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용 (Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application)

  • 정대이;정도현;문기현;정창현;노기한;최형진
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

Reanalysis of Ohno's hypothesis on conservation of the size of the X chromosome in mammals

  • Kim, Hyeongmin;Lee, Taeheon;Sung, Samsun;Lee, Changkyu;Kim, Heebal
    • Animal cells and systems
    • /
    • 제16권6호
    • /
    • pp.438-446
    • /
    • 2012
  • In 1964, Susumu Ohno, an evolutionary biologist, hypothesized that the size of X chromosome was conserved in mammalian evolution, and that this was based on chromosomal length. Today, unlike Ohno's method which was based on estimated lengths, we know the exact lengths of some mammalian sequences. The aim of this study was to reanalyze Ohno's hypothesis. In mammalian species, variation in the length of the X chromosome is greater than in the autosomes; however, this variation is not statistically significant. This means that differences in chromosomal length occur equally in the X chromosome and in the autosomes. Interspersed nuclear elements and genetic rearrangements were analyzed to maintain the same variance between the length of the X chromosome and the autosomes. The X chromosome contained fewer short interspersed elements (SINEs) (0.90 on average); however, it did contain more long interspersed elements (LINEs) than did autosomes (1.56 on average). An overall correlation of LINEs and SINEs with genetic rearrangements was observed; however, synteny breaks were more closely associated with LINEs in the autosomes, and with SINEs in the X chromosome. These results suggest that the chromosome-specific activities of LINEs and SINEs result in the same variance between the lengths of the X chromosome and the autosomes. This is based on the function of interspersed nuclear elements, such as LINEs, which can inactivate the X chromosome and the reliance of non-autonomous SINEs on LINEs for transposition.