• Title/Summary/Keyword: Sine Vibration

Search Result 143, Processing Time 0.024 seconds

Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes

  • Burkacki, Daniel;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.175-189
    • /
    • 2019
  • The aim of the study is to show the results of complex shaking table experimental investigation focused on the response of two models of cylindrical steel tanks under mining tremors and moderate earthquakes, including the aspects of diagnosis of structural damage. Firstly, the impact and the sweep-sine tests have been carried out, so as to determine the dynamic properties of models filled with different levels of liquid. Then, the models have been subjected to seismic and paraseismic excitations. Finally, one fully filled structure has been tested after introducing two different types of damages, so as to verify the method of damage diagnosis. The results of the impact and the sweep-sine tests show that filling the models with liquid leads to substantial reduction in natural frequencies, due to gradually increasing overall mass. Moreover, the results of sweep-sine tests clearly indicate that the increase in the liquid level results in significant increase in the damping structural ratio, which is the effect of damping properties of liquid due to its sloshing. The results of seismic and paraseismic tests indicate that filling the tank with liquid leads initially to considerable reduction in values of acceleration (damping effect of liquid sloshing); however, beyond a certain level of water filling, this regularity is inverted and acceleration values increase (effect of increasing total mass of the structure). Moreover, comparison of the responses under mining tremors and moderate earthquakes indicate that the power amplification factor of the mining tremors may be larger than the seismic power amplification factor. Finally, the results of damage diagnosis of fully filled steel tank model indicate that the forms of the Fourier spectra, together with the frequency and power spectral density values, can be directly related to the specific type of structural damage. They show a decrease in the natural frequencies for the model with unscrewed support bolts (global type of damage), while cutting the welds (local type of damage) has resulted in significant increase in values of the power spectral density for higher vibration modes.

Circuit Design for Noise Removal of Sine Wave Hall Sensor Signal (정현파 Hall Sensor 신호의 잡음제거를 위한 회로설계)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.135-141
    • /
    • 2021
  • Interest is growing in the design and development of square wave driven BLDC permanent magnet motors suitable for industrial automation, and the development of position detection circuits and drivers. However, this motor is somewhat limited in its application despite the price and functional advantages due to the decrease in efficiency due to switching loss and vibration and noise. In the process of designing and assembling a BLDC motor, the magnetic pole angle is not uniform or the magnetic flux distribution is distorted due to problems in magnetic circuit design or product non-uniformity in the assembly process. Therefore, these things cause position detection deviation and deteriorate the motor characteristics. In addition, the sine wave driven BLDC system can operate stably only when the signal generated from the position sensor is accurately fed back to the driver. However, since the generated signal cannot perform stable position detection due to the occurrence of DC offset component due to magnetic flux density deviation or magnetization technology, which is an external influence, this study intends to study the proposed circuit that can remove the DC offset component.

Development of a double cantilever sandwich beam method for evaluating frequency dependence of dynamic modulus and damping factor of rubber materials (고무의 동탄성계수와 손실계수의 주파수 의존성을 평가하기 위한 양팔 샌드위치보 시험법의 개발)

  • 김광우;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.19-22
    • /
    • 2001
  • This paper proposes a double cantilever sandwich-beam method for evaluating the frequency dependence of material dynamic characteristics. The flexural vibration of a double cantilever sandwich-beam specimen with a partially inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Quadratic relationships of dynamic elastic modulus and material loss factor of rubbers with frequency were quantitatively suggested employing the least square error method.

  • PDF

Nonlinear Dynamic Characteristics of Deployable Missile Control Fin (접는 미사일 조종날개의 비선형 동특성)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Shin, Young-Sug;Lee, Yeol-Wha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.808-815
    • /
    • 2002
  • The nonlinear characteristics for hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method. especially, ″Force-state Mapping Technique″, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

Shock Analysis of Head and Disk in Hard Disk Drive According to Various Rotating Speed (하드디스크 드라이브의 회전속도 변화에 따른 디스크와 헤드의 충격해석)

  • 박대경;박노철;박영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1075-1082
    • /
    • 2004
  • This research demonstrates the shock response analysis of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. Head-suspension system is modeled as the cantilever in order to get simulation results. Simulation results of HDA are calculated by Runge-Kutta method. Finally, shock responses of head and disk are analyzed according to the change of the rotating speed of the disk.

An analysis on the fluid-loading coefficient of cylindrical shell using COSINE series (COSINE 급수를 이용한 원통형 셀의 유체 영향계수 해석)

  • 정우진;전재진;이헌곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.334-339
    • /
    • 1995
  • COSINE 급수를 이용한 유한 길이 원통형 셀의 유체 영향계수에 대한 해석결과를 양단 단순지지 조건(Simply-supported condition)을 갖는 해석모델에서 이용한 SINE 급수를 적용한 해석 결과와 비교, 검토한 결과 유사한 경향을 보이고 있으며, 무차원 파수 ka 값이 커질수록 Reactance는 0으로 접근하고 Resistance는 .rho.c 값으로 접근하는 경향을 가지고 있어 타당한 해석방법임을 알 수 있었다. 따라서 양단에 끝막이 판을 갖고 있는 원통형 셀에 대한 음압복사 현상을 해석하는데 COSINE 급수를 이용하는 것이 가능함을 본 연구를 통하여 확인하였다. 또한 본 연구에서 유도한 Z$_{mm}$값을 이용하면 양단에 끝막이 판을 갖고 있는 원통형 셀에서의 유체 효과를 용이하게 해석할 수 있다.

  • PDF

Impact Analysis of Printed Circuit Boards Using Finite Element Method (FEM을 활용한 회로기판의 충격 해석)

  • 박철희;이우식;홍성철;박용석;서정범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.141-146
    • /
    • 1992
  • 본 연구에서는 먼저 낙하 충격을 받는 전자 제품을 수학적인 모델링을 행하 므로서 낙하 충격시 제품이 받게되는 충격력을 정량화하였고, 전자 제품내 많은 부품들의 낙하충격에 대한 동특성해석의 일환으로 핵심 부품인 PCB(printed circuit board)를 해석하였다. PCB 해석을 위하여 유한요소법을 사용하였고, PCB에 작용하는 half-sine pulse의 속도 변화에 다른 가속도 응 답 및 최대 충격가속도, 주기의 변화에 다른 PCB의 가속도 응답을 해석하였 다. 제시된 해석 기법은 낙하충격에 대비한 적절한 electric component의 layout및 최적의 PCB 취부조건등의 결정을 가능케 함으로써, 설계단계에서 낙하 충격을 고려한 PCB설계가 될 수 있도록 그 활용 방안을 제시하였고 반복된 낙하충격 실험을 줄일 수 있으므로 경비 절감 및 개발 소요기간도 절감할 수 있다.

  • PDF

A Development of Turbine Simulator and Foundation Excitation Test (모사터빈 시험기 개발 및 기초가진 시험)

  • 김영철;이안성;김병옥;김영춘;우성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.675-680
    • /
    • 2004
  • In this study, a turbine simuiator is designed and manufactured to investigate the transient response of an actual turbine. The rotor mass and bearing stiffness is reduced to 1/140 of its actual turbine. The dynamic characteristics of turbine simulator are similar to those of the actual turbine. The turbine simulator is excited by an electro-magnetic type exciter in the form of half sine wave. Duration time is con☞oiled by Sms, 10ms, and Isms, and maximum acceleration is applied by 3g. Foundation excitation test is performed in stationary condition and rotating condition(6000rpm). The test results can be used to verify the validif of the theoretical afproach for transient analysis of actual turbine.

  • PDF

Modal Parameter Estimation of Membrane for Standard Microphone Sensitivity Calibration (표준 마이크로폰 감도 교정을 위한 진동막의 모달 파라미터 측정)

  • 권휴상;서상준;서재갑;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.298-302
    • /
    • 2002
  • Equivalent volume estimation of the coupler and two coupled microphones has a key role in standard microphone pressure calibration. The equivalent volume of the microphone is determined by the dynamic characteristics of the diaphragm system and front cavity. Therefore the modal parameters of diaphragm system - natural frequency and damping fatter - should be measured explicitly for the estimation of the equivalent volume. The diaphragm system is composed of the vibrating diaphragm, back slit behind diaphragm, pressure equalization vent, and front cavity which are acoustically coupled. In the measurement, the electrostatic actuator was used to excite the system with the swept sine, and the frequency response was obtained. The close actuator in front of the diaphragm must influence the radiation impedance of the system, and then the modal parameters. From the measured frequency response, the natural frequency and the damping factor could be estimated with the Complex exponential method based on the Prony model and the zero crossing real and imaginary plot.

  • PDF

Nonlinear Hinge Dynamics Estimation of Deployable Missile Control Fin (접는 미사일 조종날개의 비선형 힌지 동특성 파악)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.848-854
    • /
    • 2002
  • The nonlinear characteristics for the hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method, especially, “Force-State Mapping Technique”, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

  • PDF