• 제목/요약/키워드: Sine's method

검색결과 88건 처리시간 0.023초

N-SOLITON SOLUTIONS FOR THE SINE-GORDON EQUATION OF DIFFERENT DIMENSIONS

  • Wazwaz, Abdul-Majid
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.925-934
    • /
    • 2012
  • In this work the sine-Gordon equation will be examined for multiple soliton solutions. The higher dimensional sine-Gordon equations will be studied for multiple soliton solutions as well. The simplified form of the Hirota's method will be employed to conduct this analytic study.

기본파 성분의 정확한 측정을 위한 해석적 방법 (An Analytic Method for Measuring Accurate Fundamental Frequency Components)

  • 남순열;강상희;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권4호
    • /
    • pp.175-182
    • /
    • 2002
  • This paper proposes an analytic method for measuring the accurate fundamental frequency component of a fault current signal distorted with a DC-offset, a characteristic frequency component, and harmonics. The proposed algorithm is composed of four stages: sine filer, linear filter, Prony's method, and measurement. The sine filter and the linear filter eliminate harmonics and the fundamental frequency component, respectively. Then Prony's method is used to estimate the parameters of the DC-offset and the characteristic frequency component. Finally, the fundamental frequency component is measured by compensating the sine-filtered signal with the estimated parameters. The performance evaluation of the proposed method is presented for a-phase to around faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault current signals under different fault locations and fault inception angles. It is shown that the analytic method accurately measures the fundamental frequency component regardless of the characteristic frequency component as well as the DC-offset.

Beating phenomena in spacecraft sine testing and an attempt to include the sine sweep rate effect in the test-prediction

  • Nali, Pietro;Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.197-209
    • /
    • 2016
  • The Spacecraft (S/C) numerical sine test-predictions are usually performed through Finite Element Method (FEM) Frequency Response Analysis (FRA), that is the hypothesis of steady-state responses to harmonic excitation to the S/C base is made. In the test practice, the responses are transient and may be significantly different from those predicted through FRA. One of the most significant causes of discrepancy between prediction and test consists in the beating phenomena. After a brief overview of the topic, the typical causes of beating are described in the first part of the paper. Subsequently, focus is made on the sine sweep rate effect, which often leads to have beatings after the resonance of weakly damped modes. In this work, the approach illustrated in the literature for calculating the sine sweep rate effect in the case of Single-Degree-Of-Freedom (SDOF) oscillators is extended to Multi-Degrees-Of-Freedom (MDOF) systems, with the aim of increasing the accuracy of the numerical sine test-predictions. Assumptions and limitations of the proposed methodology are detailed along the paper. Several assessments with test results are discussed and commented.

그래픽 디스프레이에 적합한 Cosine, Sine함수 발생기 설계에 관한 연구 (A Study On the Design of Cosine, Sine Function Generator for the Display of Graphics)

  • 김용성
    • 정보학연구
    • /
    • 제8권3호
    • /
    • pp.1-10
    • /
    • 2005
  • Cosine and Sine function is widely used for the arithmetic, translation, object drawing, Simulation and etc. of Computer Graphics in Natural Science and Engineering. In general, Cordic Algorithm is effective method since it has relatively small size and simple architecture on trigonometric function generation. However profitably it has those merits, the problem of operation speed is occurred. In graphic display system, the operation result of object drawing is quantized and has the condition that is satisfied with rms error less than 1. So in this paper, the proposed generator is composed of partition operation at each ${\pi}/4$ and basic Cosine, Sine function generator in the range of $0{\sim}{\pi}/4$ using the lower order of Tayler's series in an acceptable error range, that enlarge the range of $0{\sim}2{\pi}$ according to a definition of the trigonometric function for the purpose of having a high speed Cosine, Sine function generation. And, division operator using code partition for divisor three is proposed, the proposed function generator has high speed operation, but it has the problems in the other application parts with accurate results, is need to increase the speed of the multiplication.

  • PDF

OPTIMAL PARAMETERS FOR A DAMPED SINE-GORDON EQUATION

  • Ha, Jun-Hong;Gutman, Semion
    • 대한수학회지
    • /
    • 제46권5호
    • /
    • pp.1105-1117
    • /
    • 2009
  • In this paper a parameter identification problem for a damped sine-Gordon equation is studied from the theoretical and numerical perspectives. A spectral method is developed for the solution of the state and the adjoint equations. The Powell's minimization method is used for the numerical parameter identification. The necessary conditions for the optimization problem are shown to yield the bang-bang control law. Numerical results are discussed and the applicability of the necessary conditions is examined.

A Numerically Controlled Oscillator with a Fine Phase Tuner and a Rounding Processor

  • Lim, In-Gi;Kim, Whan-Woo
    • ETRI Journal
    • /
    • 제26권6호
    • /
    • pp.657-660
    • /
    • 2004
  • We propose a fine phase tuner and a rounding processor for a numerically controlled oscillator (NCO), yielding a reduced phase error in generating a digital sine waveform. By using the fine phase tuner presented in this paper, when the ratio of the desired sine wave frequency to the clock frequency is expressed as a fraction, an accurate adjustment in representing the fractional value can be achieved with simple hardware. In addition, the proposed rounding processor reduces the effects of phase truncation on the output spectrum. Logic simulation results of the NCO using these techniques show that the noise spectrum and mean square error (MSE) for eight output bits of a 3.125 MHz sine waveform are reduced by 8.68 dB and 5.5 dB, respectively, compared to those of the truncation method, and 2.38 dB and 0.83 dB, respectively, compared to those of Paul's scheme.

  • PDF

레이블링 방법을 이용한 지문 영상의 기준점 검출 (Core Point Detection Using Labeling Method in Fingerprint)

  • 송영철;박철현;박길흠
    • 한국통신학회논문지
    • /
    • 제28권9C호
    • /
    • pp.860-867
    • /
    • 2003
  • 본 논문에서는 방향 패턴 레이블링을 이용하여 지문 영상의 중심점을 검출하는 방법을 제안하였다. 중심점은 지문영상에서의 특이점들 중의 하나이며 대부분의 지문 인식 시스템에서 기준점으로 사용되고 있다. 중심점의 검출은 지문 인식 시스템에서 반드시 수행되어야할 중요한 단계로 전체 시스템의 성능에 큰 영향을 준다. 제안된 방법에서는 ridge의 분포로부터 얻어낸 방향 성분에 레이블링 방법과 중심점의 위치를 결정하는 알고리즘을 적용하여 중심점의 위치를 검출할 수 있었다. 모의 실험 결과 제안한 방법이 Poincare index와 Sine map 방법들에 비해 수행시간과 검출률 모두에서 좀더 나은 성능을 보임을 확인하였다. 특히 제안한 방법은 arch 형의 중심점 검출에 있어 Poincare index 방법의 낮은 검출률과 Sine map 방법의 긴 수행 시간이라는 단점들을 모두 극복하였다.

Asymmetric Multiple-Image Encryption Based on Octonion Fresnel Transform and Sine Logistic Modulation Map

  • Li, Jianzhong
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.341-357
    • /
    • 2016
  • A novel asymmetric multiple-image encryption method using an octonion Fresnel transform (OFST) and a two-dimensional Sine Logistic modulation map (2D-SLMM) is presented. First, a new multiple-image information processing tool termed the octonion Fresneltransform is proposed, and then an efficient method to calculate the OFST of an octonion matrix is developed. Subsequently this tool is applied to process multiple plaintext images, which are represented by octonion algebra, holistically in a vector manner. The complex amplitude, formed from the components of the OFST-transformed original images and modulated by a random phase mask (RPM), is used to derive the ciphertext image by employing an amplitude- and phase-truncation approach in the Fresnel domain. To avoid sending whole RPMs to the receiver side for decryption, a random phase mask generation method based on SLMM, in which only the initial parameters of the chaotic function are needed to generate the RPMs, is designed. To enhance security, the ciphertext and two decryption keys produced in the encryption procedure are permuted by the proposed SLMM-based scrambling method. Numerical simulations have been carried out to demonstrate the proposed scheme's validity, high security, and high resistance to various attacks.

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

격자형 노치 필터를 이용한 정현파 검출기 (An Adaptive Line Enhancer Using Lattice Notch Filters)

  • 조남익;최종호;이상욱
    • 대한전자공학회논문지
    • /
    • 제24권4호
    • /
    • pp.719-726
    • /
    • 1987
  • In this paper, an adaptive IIR (infinite impulse response) notch filter of lattice type is constructed and its adaptation algorithm is proposed for the detection and retrieval of a sine wave signal embedded in noise. A modified method which adapts only one coefficient of the filter is also suggested. All these methods adapt the coefficients while keepting the poles of the filter inside the unit circle on z-plane, and thus they satisfy the condition on the stability of the IIR filter after it has converged. To investigate the convergence characteristics of these methods such as convergence speed and output S/N ratio, intensive computer simulation has been performed by varying the frequency of the sine wave and the input S/N ratio. And the results of the simulation have been compared to those of Rao and Kung's which shows relatively fast convergence speed. The methods proposed here, especially the second one. shows faster convergence speed and higher output S/N ratio than the Rao and Kung's.

  • PDF