• Title/Summary/Keyword: Simultaneous optimization

Search Result 262, Processing Time 0.027 seconds

Topology optimal design of magnetic recording system (자기기록장치의 위상최적설계)

  • Park, Soon-Ok;Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.618-621
    • /
    • 2008
  • The magnetic recording system shows the difference of the magnetic recording density according to the direction of the magnetic field. The yoke shape of the recording system affects the magnetic field direction; therefore, the recording density may be raised by changing the shape. This paper intends not only to increase the magnetic flux density of the record region but also to reduce the recording loss of a specific region through the simultaneous design of the yoke and the magnet. The recording loss can be reduced by minimizing the magnetic flux of the adjacent area to the recording region. The topology optimization method is used to obtain the optimal shape both of the yoke and the magnet. And the commercial package, Maxwell is used to verify the result.

  • PDF

Modeling and multiple performance optimization of ultrasonic micro-hole machining of PCD using fuzzy logic and taguchi quality loss function

  • Kumar, Vinod;kumari, Neelam
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.129-146
    • /
    • 2012
  • Polycrystalline diamond is an ideal material for parts with micro-holes and has been widely used as dies and cutting tools in automotive, aerospace and woodworking industries due to its superior wear and corrosion resistance. In this research paper, the modeling and simultaneous optimization of multiple performance characteristics such as material removal rate and surface roughness of polycrystalline diamond (PCD) with ultrasonic machining process has been presented. The fuzzy logic and taguchi's quality loss function has been used. In recent years, fuzzy logic has been used in manufacturing engineering for modeling and monitoring. Also the effect of controllable machining parameters like type of abrasive slurry, their size and concentration, nature of tool material and the power rating of the machine has been determined by applying the single objective and multi-objective optimization techniques. The analysis of results has been done using the MATLAB 7.5 software and results obtained are validated by conducting the confirmation experiments. The results show the considerable improvement in S/N ratio as compared to initial cutting conditions. The surface roughness of machined surface has been measured by using the Perthometer (M4Pi, Mahr Germany).

Outage Analysis and Optimization for Four-Phase Two-Way Transmission with Energy Harvesting Relay

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3321-3341
    • /
    • 2014
  • This paper investigates the outage performance and optimization for the four-phase two-way transmission network with an energy harvesting (EH) relay. To enable the simultaneous information processing and energy harvesting at the relay, we firstly propose a power splitting-based two-way relaying protocol (PSTWR). Then, we discuss its outage performance theoretically and derive an explicit expression for the system outage probability. In order to find the optimal system configuration parameters such as the optimal power splitting ratio and the optimal transmit power redistribution factor, we formulate an outage-minimized optimization problem. As the problem is difficult to solve, we design a genetic algorithm (GA) based algorithm for it. Besides, we also investigate the effects of the power splitting ratio, the power redistribution factor at the relay, and the source to relay distance on the system outage performance. Finally, extensive simulation results are provided to demonstrate the accuracy of the analytical results and the effectiveness of the GA-based algorithm. Moreover, it is also shown that, the relay position greatly affects the system performance, where relatively worse outage performance is achieved when the EH relay is placed in the middle of the two sources.

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

Optimization of filling process in RTM using genetic algorithm

  • Kim, Byoung-Yoon;Nam, Gi-Joon;Ryu, Ho-Sok;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.83-92
    • /
    • 2000
  • In resin transfer molding (RTM) process, preplaced fiber mat is set up in a mold and thermoset resin is injected into the mold. An important interest in RTM process is to minimize cycle time without sacrificing part quality or increasing cost. In this study, the numerical simulation and optimization process in filling stage were conducted in order to determine the optimum gate locations. Control volume finite element method (CVFEM) was used in this numerical analysis with the coordinate transformation method to analyze the complex 3-dimensional structure. Experiments were performed to monitor the flow front to validate simulation results. The results of numerical simulation predicted well the experimental results with every single, simultaneous and sequential injection procedure. We performed the optimization analysis for the sequential injection procedure to minimize fill time. The complex geometry of an automobile bumper core was chosen. Genetic algorithm was used in order to determine the optimum gate locations with regard to 3-step sequential injection case. These results could provide the information of the optimum gate locations in each injection step and could predict fill time and flow front.

  • PDF

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende;Luiz F. Martha;Afonso C. C. Lemonge;Patricia H. Hallak;Jose P. G. Carvalho;Julia C. Motta
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.327-351
    • /
    • 2023
  • This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

Goal-Pareto based NSGA Optimization Algorithm (Goal-Pareto 기반의 NSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Shin, Yo-An;Yoo, Myung-Sik;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.108-115
    • /
    • 2007
  • This paper proposes a new optimization algorithm prescribed by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) whose result satisfies the user's needs and goals to enhance the performance of optimization. Typically, lots of real-world engineering problems encounter simultaneous optimization subject to satisfying prescribed multiple objectives. Unfortunately, since these objectives might be mutually competitive, it is hardly to find a unique solution satisfying every objectives. Instead, many researches have been investigated in order to obtain an optimal solution with sacrificing more than one objectives. This paper introduces a novel optimization scheme named by GBNSGA obeying both goals as well as objectives as possible as it can via allocating candidated solutions on Pareto front, which enhances the performance of Pareto based optimization. The performance of the proposed GBNSGA will be compared with that of the conventional NSGA and weighted-sum approach.

Optimization of Simultaneous Saccharification and Fermentation of Rice Straw to Produce Butanol (Butanol 생산을 위한 동시 당화 발효법의 최적화)

  • Jun, Young-Sook;Kwon, Gi-Seok;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.213-218
    • /
    • 1988
  • Studies were made to optimize the simultaneous saccharification and fermentation (SSF) of rice straw to produce butanol using Clostridium acetobutylicum KCTC 1037 and a cellulolytic enzyme preparation from Trichoderma viride. The fermentation was inhibited when the liquid enzyme preparation from Novo was used, whilst a successful fermentation was achieved in the SSF using the enzyme manufactured by Pacific Chemical Co. The minimum cellulase concentration for the successful fermentation of pure cellulose was found to be 4 IU/g of substrate used. Alkaline treatment was better method for the fermentation of rice straw by the system. SSF using 25% alkaline treated rice straw produced 150 mM butanol, 90 mM acetone. On the other hand, fermentation of ball milled rice straw was mainly acidogenic producing 98 mM acetate and 64 mM butyrate with less than 20 mM butanol. These results show that rice straw contains (a) specific inhibitor(s) for solventogenesis which is destroyed or soluble in alkali.

  • PDF

Optimization of Simultaneous Saccharification and Fermentation Process for Ethanol Production using Waste Paper (연료용 에탄올 생산을 위한 폐지의 동시당화발효 공정 최적화)

  • 심희준;김승욱;홍석인
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.247-251
    • /
    • 2000
  • 지금까지 인류의 생활을 영위하기 위해 사용되어온 에너지 자원은 주로 화석연료가 대부분이었다. 대부분의 화석연료는 석유와 석탄으로 구성되어 있으며 그 중에서 석유는 인류의 생활에 없어서는 안될 매우 중요한 에너지 자원이 되었고 여러 방면에서 사용되고 있다. 그러나 대부분의 석유 매장량은 중동지방에 집중되어 있고 매장량이 한정되어 있다. 특히 석유는 국제 정세에 의해 중동지방으로부터의 원유공급이 불확실해질 수 있고 각 지역으로 석유공급을 할 때 관련되는 비용이 높은 문제점을 가지고 있다.(중략)

  • PDF

유전자 알고리즘을 이용한 반능동형가장치의 구조-제어계의 동시최적화

  • 서민선;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.501-504
    • /
    • 1995
  • A Simultaneous optimal design of structural and control system of a semi-active suspension is applied on a helf-car model in this paper. Suspension stiffnesses and dampings are selected as structural design parameters and damping forces of variable dampers as controller parameters. Sence this optimization problem is of large discontinuous space, conventional exhaustive methods are not enough. So we here try out an approach using Genetic Algorithm for our problem. Through numerical simulation work, the performance of the simultaneously optimized system was tested and showed meaningful improvement over the partially optimized ones.

  • PDF