• Title/Summary/Keyword: Simultaneous optimization

Search Result 265, Processing Time 0.029 seconds

Optimization of Total Flavonoids Extraction Process from Wheat Sprout using Central Composite Design Model (중심합성계획모델을 이용한 밀싹으로부터 플라보노이드성분의 추출공정 최적화)

  • Lee, Seung Bum;Wang, Xiaozheng;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.446-451
    • /
    • 2018
  • Effective ingredients were extracted using wheat sprout with high levels of flavonoids, and the extraction process was optimized with a central composite design model. The response value of the central composite design model establishes the extraction yield and the content of the flavonoids. The main and interactive effects were then analyzed depending on independent variables such as the extraction time, the volume ratio of alcohol to ultrapure water, and the extraction temperature. The extraction time and temperature were relatively large for the extraction yield. For the total flavonoids, the extraction time was most significantly affected. Considering both the extraction yield and the content of the total flavonoids, optimal extraction conditions were as follows: the extraction time (2.44 h), volume ratio of alcohol to ultrapure water (50.00 vol%), extraction temperature ($54.41^{\circ}C$). Under these condition, the extraction yield was 30.14 wt% and the content of the total flavonoids was $35.37{\mu}g\;QE/mL\;dw$. From the actual experimental result, the extraction yield under this condition was 29.92 wt% and the content of the total flavonoids was $35.32{\mu}g\;QE/mL\;dw$, which had an error rate of 0.39% and 0.74%, respectively. This is a multi-analysis comprehensive analysis that analyzes two simultaneous values of responses, but is considered to be highly accurate and also provides an excellent reliability of the optimization process in this study.

Effect of the Mixed Culture of Bacillus subtilis and Lactobacillus plantarum on the Quality of Cheonggukjang (Bacillus subtilis와 Lactobacillus plantarum의 혼합배양이 청국장의 품질에 미치는 영향)

  • Ju, Kyung-Eun;Oh, Nam-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2009
  • The goal of this study was to improve the quality of cheonggukjang by the optimization of the inoculation methods of the Bacillus subtilis (B. subtilis) and Lactobacillus plantarum (L. plantarum) strains. In order to optimize the mixed cultivation of B. subtilis and L. plantarum, the B. subtilis strain was inoculated into steamed soybeans after cultivation of L. plantarum. Inoculation size of B. subtilis was changed to the simultaneous inoculation method in order to stimulate the growth of the L. plantarum in cheonggukjang. The viable cell count of L. plantarum increased from $2{\times}10^7$ CFU/g to $2-6{\times}10^8$ CFU/g and B. subtilis grew to $9{\times}10^8$ CFU/g. These results showed that 2 strains were successfully able to grow in the steamed soybean for good quality of cheonggukjang by optimization of the inoculation methods. The sensory evaluation indicated that a favorable aroma and overall acceptance of cheonggukjang by the optimized mixed cultivation of B. subtilis and L. plantarum, which was relatively higher than those of cheonggukjang by single strain inoculation of B. subtilis.

lp-norm regularization for impact force identification from highly incomplete measurements

  • Yanan Wang;Baijie Qiao;Jinxin Liu;Junjiang Liu;Xuefeng Chen
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.97-116
    • /
    • 2024
  • The standard l1-norm regularization is recently introduced for impact force identification, but generally underestimates the peak force. Compared to l1-norm regularization, lp-norm (0 ≤ p < 1) regularization, with a nonconvex penalty function, has some promising properties such as enforcing sparsity. In the framework of sparse regularization, if the desired solution is sparse in the time domain or other domains, the under-determined problem with fewer measurements than candidate excitations may obtain the unique solution, i.e., the sparsest solution. Considering the joint sparse structure of impact force in temporal and spatial domains, we propose a general lp-norm (0 ≤ p < 1) regularization methodology for simultaneous identification of the impact location and force time-history from highly incomplete measurements. Firstly, a nonconvex optimization model based on lp-norm penalty is developed for regularizing the highly under-determined problem of impact force identification. Secondly, an iteratively reweighed l1-norm algorithm is introduced to solve such an under-determined and unconditioned regularization model through transforming it into a series of l1-norm regularization problems. Finally, numerical simulation and experimental validation including single-source and two-source cases of impact force identification are conducted on plate structures to evaluate the performance of lp-norm (0 ≤ p < 1) regularization. Both numerical and experimental results demonstrate that the proposed lp-norm regularization method, merely using a single accelerometer, can locate the actual impacts from nine fixed candidate sources and simultaneously reconstruct the impact force time-history; compared to the state-of-the-art l1-norm regularization, lp-norm (0 ≤ p < 1) regularization procures sufficiently sparse and more accurate estimates; although the peak relative error of the identified impact force using lp-norm regularization has a decreasing tendency as p is approaching 0, the results of lp-norm regularization with 0 ≤ p ≤ 1/2 have no significant differences.

Constrained Spatiotemporal Independent Component Analysis and Its Application for fMRI Data Analysis

  • Rasheed, Tahir;Lee, Young-Koo;Lee, Sung-Young;Kim, Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.373-380
    • /
    • 2009
  • In general, Independent component analysis (ICA) is a statistical blind source separation technique, used either in spatial or temporal domain. The spatial or temporal ICAs are designed to extract maximally independent sources in respective domains. The underlying sources for spatiotemporal data (sequence of images) can not always be guaranteed to be independent, therefore spatial ICA extracts the maximally independent spatial sources, deteriorating the temporal sources and vice versa. For such data types, spatiotemporal ICA tries to create a balance by simultaneous optimization in both the domains. However, the spatiotemporal ICA suffers the problem of source ambiguity. Recently, constrained ICA (c-ICA) has been proposed which incorporates a priori information to extract the desired source. In this study, we have extended the c-ICA for better analysis of spatiotemporal data. The proposed algorithm, i.e., constrained spatiotemporal ICA (constrained st-ICA), tries to find the desired independent sources in spatial and temporal domains with no source ambiguity. The performance of the proposed algorithm is tested against the conventional spatial and temporal ICAs using simulated data. Furthermore, its performance for the real spatiotemporal data, functional magnetic resonance images (fMRI), is compared with the SPM (conventional fMRI data analysis tool). The functional maps obtained with the proposed algorithm reveal more activity as compared to SPM.

Breast Cytology Diagnosis using a Hybrid Case-based Reasoning and Genetic Algorithms Approach

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.389-398
    • /
    • 2007
  • Case-based reasoning (CBR) is one of the most popular prediction techniques for medical diagnosis because it is easy to apply, has no possibility of overfitting, and provides a good explanation for the output. However, it has a critical limitation - its prediction performance is generally lower than other artificial intelligence techniques like artificial neural networks (ANNs). In order to obtain accurate results from CBR, effective retrieval and matching of useful prior cases for the problem is essential, but it is still a controversial issue to design a good matching and retrieval mechanism for CBR systems. In this study, we propose a novel approach to enhance the prediction performance of CBR. Our suggestion is the simultaneous optimization of feature weights, instance selection, and the number of neighbors that combine using genetic algorithms (GAs). Our model improves the prediction performance in three ways - (1) measuring similarity between cases more accurately by considering relative importance of each feature, (2) eliminating redundant or erroneous reference cases, and (3) combining several similar cases represent significant patterns. To validate the usefulness of our model, this study applied it to a real-world case for evaluating cytological features derived directly from a digital scan of breast fine needle aspirate (FNA) slides. Experimental results showed that the prediction accuracy of conventional CBR may be improved significantly by using our model. We also found that our proposed model outperformed all the other optimized models for CBR using GA.

  • PDF

Optimization of Expression Conditions for Soluble Protein by Using a Robotic System of Multi-culture Vessels

  • Ahn, Woo-Sung;Ahn, Ji-Young;Jung, Chan-Hun;Hwang, Kwang-Yeon;Kim, Eunice Eun-Kyeong;Kim, Joon;Im, Ha-Na;Kim, Jin-Oh;Yu, Myeong-Hee;Lee, Cheol-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1868-1874
    • /
    • 2007
  • We have developed a robotic system for an automated parallel cell cultivation process that enables screening of induction parameters for the soluble expression of recombinant protein. The system is designed for parallelized and simultaneous cultivation of up to 24 different types of cells or a single type of cell at 24 different conditions. Twenty-four culture vessels of about 200 ml are arranged in four columns${\times}$six rows. The system is equipped with four independent thermostated waterbaths, each of which accommodates six culture vessels. A two-channel liquid handler is attached in order to distribute medium from the reservoir to the culture vessels, to transfer seed or other reagents, and to take an aliquot from the growing cells. Cells in each vessel are agitated and aerated by sparging filtered air. We tested the system by growing Escherichia coli BL21(DE3) cells harboring a plasmid for a model protein, and used it in optimizing protein expression conditions by varying the induction temperature and the inducer concentration. The results revealed the usefulness of our custom-made cell cultivation robot in screening optimal conditions for the expression of soluble proteins.

Optimization of d-limonene Extraction from Tangerine Peel in Various Solvents by Using Soxhlet Extractor (다양한 용매에서 Soxhlet 추출기를 이용한 감귤 껍질에서 d-limonene 추출의 최적조건 연구)

  • Park, Sang Min;Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.717-722
    • /
    • 2015
  • D-limonene included in citrus fruits is obtainable to extract essential oil as well as separate the oil ingredient. Soxhlet extraction, a type of SDE (Simultaneous steam Distillation and solvent Extraction), was used to extract limonene from tangerine peel. HPLC analysis was performed to quantify extracted d-limonene by using reversed-phase HPLC column. Results of HPLC analysis showed that the optimal extraction time was 2 hours in any solvent, and the extracted amounts of d-limonene in tangerine peel (per g tangerine peel) were 7.77 mg, 0.49 mg, and 0.28 mg in ethyl alcohol, n-hexane, and ether. Because yield was the highest in using ethyl alcohol as a solvent, polarity is stronger factor to effect on yield of extraction than boiling point.

In situ Recovery of hGM-CSF in Transgenic Rice Cell Suspension Cultures (형질전환 벼 현탁세포 배양에서 hGM-CSF의 in situ Recovery 연구)

  • Myoung, Hyun-Jong;Choi, Hong-Yeol;Nam, Hyung-Jin;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.103-108
    • /
    • 2015
  • Production of foreign proteins by transgenic plant cell cultures has several advantages such as post-translational modification, low risk of product contamination and low-cost production and purification. However, target proteins are degraded by extracellular proteases existing in the media. A solution to this problem is the use of perfusion culture and ion exchange chromatography for the application of integrated bioprocess using in situ recovery. With this method, production of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was investigated in this study. First, optimization of cell concentration during the induction phase for the production of hGM-CSF was examined. As cell concentration increased, the level of hGM-CSF was decreased due to the presence of extracellular proteases. Induction using sugarfree media produced 33% more hGM-CSF. The effects of pH on the binding of hGM-CSF to cationic and anionic exchange resins were also investigated. In terms of stability, optimal pH was found to be 5~7. In the case of using buffer exchange when CM-Sepharose was used as a cationic exchange resin, optimal pH for binding was 4.8 and adsorption yield was 77%. When DEAE-Sepharose was used as an anionic exchange resin, it was 5.5 (74%). Without buffer exchange, optimal pH was 4.6 (84%). From these results, an integrated bioprocess using in situ recovery with simultaneous production and separation of foreign protein in transgenic plant cell suspension cultures was found to be feasible.

Determination of Dibutyltin in Sediments Using Isotope Dilution Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

  • Yim, Yong-Hyeon;Park, Ji-Youn;Han, Myung-Sub;Park, Mi-Kyung;Kim, Byung-Joo;Lim, Young-Ran;Hwang, Eui-Jin;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.440-446
    • /
    • 2005
  • A method is described for the determination of dibutyltin (DBT) in sediment by isotope dilution using liquid chromatography inductively-coupled plasma/mass spectrometry (LC-ICP/MS). To achieve the highest accuracy and precision, special attentions are paid in optimization and evaluation of overall processes of the analysis including extraction of analytes, characterization of the standards used for calibration and LC-ICP/MS conditions. An approach for characterization of natural abundance DBT standard has been developed by combining inductively-coupled plasma/optical emission spectrometry (ICP/OES) and LC-ICP/MS for the total Sn assay and the analysis of Sn species present as impurities, respectively. An excellent LC condition for separation of organotin species was found, which is suitable for simultaneous DBT and tributyltin (TBT) analysis as well as impurity analysis of DBT standards. Microwave extraction condition was also optimized for high efficiency while preventing species transformation. The present method determines the amount contents of DBT in sediments with expanded uncertainty of less than 5% and its result shows high degree of equivalence with reference values of an international inter-comparison and a certified reference material (CRM) within stated uncertainties.

Enhanced Lovastatin Production by Solid State Fermentation of Monascus ruber

  • Xu Bao-Jun;Wang Qi-Jun;Jia Xiao-Qin;Sung Chang-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The purpose of this study was to optimize the solid state cultivation of Monascus ruber on sterile rice. A single-level-multiple-factor and a single-factor-multiple-level experimental design were employed to determine the optimal medium constituents and to optimize carbon and nitrogen source concentrations for lovastatin production. Simultaneous quantitative analyses of the ${\beta}$-hydroxyacid form and ${\beta}$-hydroxylactone for of lovastatin were performed by the high performance liquid chromatography (HPLC) method with a UV photodiode-array (PDA) detector. The total lovastatin yield ($4{\sim}6\;mg/g$, average of five repeats) was achieved by adding soybean powder, glycerol, sodium nitrate, and acetic acid at optimized levels after 14 days of fermentation. The maximal yield of lovastatin under the optimal composition of the medium increased by almost 2 times the yield observed prior to optimization. The experimental results also indicated that the ${\beta}$-hydroxylactone form of lovastatin (LFL) and the ${\beta}$-hydroxyacid form of lovastatin (AFL) simultaneously existed in solid state cultures of Monascus ruber. while the latter was the dominant form in the middle-late stage of continued fermentation. These results indicate that optimized culture conditions can be used for industrial production of lovastatin to obtain high yields.