• 제목/요약/키워드: Simultaneous Optimal Design

검색결과 81건 처리시간 0.026초

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

유연보의 진동제어를 위한 구조계와 제어계의 동시최적화 (Simultaneous Optimization of Structural and Control Systems for Vibration Control of Flexible Beams)

  • 김창동;정의봉
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3127-3135
    • /
    • 1994
  • An approach to the simultaneous optimal design of structure and control system for large free-free flexible beam is presented. The flexible beam is modeled by the finite element method. And the reduced model of small degree of freedom is constructed by use of modal analysis. The tapered beam is considered so that the number of design variables is not dependent on the increasing number of finite elements. The width of several points of tapered beam and control gain are taken as design variables. The shape of beam and control gain are optimized simultaneously for the minimum weight of total structure including control system subject to the constraints of the magnitude of displacement of beam. It is shown that the simultaneous optimal design of structure and control systems is indeed useful.

계수조건부 LMI를 이용한 동시안정화 LQ 최적제어기 설계 (Rank-constrained LMI Approach to Simultaneous Linear Quadratic Optimal Control Design)

  • 김석주;천종민;김종문;김춘경;이종무;권순만
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1048-1052
    • /
    • 2007
  • This paper presents a rank-constrained linear matrix inequality(LMI) approach to simultaneous linear-quadratic(LQ) optimal control by static output feedback. Simultaneous LQ optimal control is formulated as an LMI optimization problem with a nonconvex rank condition. An iterative penalty method recently developed is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method, and the results are compared with those of previous work.

Active Vibration Control of a Structure with Output Feedback Based on Simultaneous Optimization Design Method

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.57-64
    • /
    • 2000
  • Recent advances in the field of control theory have enabled us to design active vibration control systems for various structures. In many studies, the controller used to suppress vibration has been synthesized for the given mathematical model of structure. In these cases, the designer has not been able to utilize the degree of freedom to adjust the structural parameters of the control object. To overcome this problem, so called 'Structure/Control Simultaneous Optimization Method' is used. In this context of view, this paper is concerned with the active vibration control of bridge towers, platforms and ocean vehicles etc. Simultaneous design method is used to achieve optimal system performance. Here, a general framework for the simultaneous design problem of output feedback case is introduced based on LMI (Linear Matrix Inequality). The simulation results show that the proposed design method achieves desirable control performance.

  • PDF

Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers

  • Murakami, Yu;Noshi, Katsuya;Fujita, Kohei;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.261-276
    • /
    • 2013
  • Oil, hysteretic and inertial mass dampers are representatives of passive dampers used for smart enhancement of seismic performance of building structures. Since oil dampers have a nonlinear relief mechanism and hysteretic dampers possess nonlinear restoring-force characteristics, several difficulties arise in the evaluation of buildings including such dampers. The purpose of this paper is to propose a practical method for simultaneous optimal use of such dampers. The optimum design problem is formulated so as to minimize the maximum interstory drift under design earthquakes in terms of a set of damper quantities subject to an equality constraint on the total cost of dampers. The proposed method to solve the optimum design problem is a successive procedure which consists of two steps. The first step is a sensitivity analysis by using nonlinear time-history response analyses, and the second step is a modification of the set of damper quantities based upon the sensitivity analysis. Numerical examples are conducted to demonstrate the effectiveness and validity of the proposed design method.

자기기록장치의 위상최적설계 (Topology optimal design of magnetic recording system)

  • 박순옥;최재석;유정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.618-621
    • /
    • 2008
  • The magnetic recording system shows the difference of the magnetic recording density according to the direction of the magnetic field. The yoke shape of the recording system affects the magnetic field direction; therefore, the recording density may be raised by changing the shape. This paper intends not only to increase the magnetic flux density of the record region but also to reduce the recording loss of a specific region through the simultaneous design of the yoke and the magnet. The recording loss can be reduced by minimizing the magnetic flux of the adjacent area to the recording region. The topology optimization method is used to obtain the optimal shape both of the yoke and the magnet. And the commercial package, Maxwell is used to verify the result.

  • PDF

목적 함수의 연립 방정식화를 위한 직접 도함수 산출에 의한 최적치 계산법 (Optimal Algorithm from Object Function to Simultaneous Equations by Direct Derivative)

  • 김주홍;엄기환
    • 한국정보통신학회논문지
    • /
    • 제4권1호
    • /
    • pp.155-163
    • /
    • 2000
  • 최적 제어나 최적 설계에 사용되는 목적함수를 연립 방정식화하여, Newton법에 의하여 최적치를 구하는 알고리즘을 제안하였다. 제안한 방식은 도함수의 산출과 입력이 불필요한 일반 도함수를 프로그램화한 직접 미분법(DDA)에 의하여 목적함수와 초기치만을 입력하여 최적치를 구하는 간단한 방식이다. 제안한 방식을 최적 제어와 최적 설계에 적용하여 유용성을 확인하였다.

  • PDF

하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화 (Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계 (Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure)

  • 박중현;김순호
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

Simultaneous Optimization for Robust Parameter Design Using Signal-to-Noise Ratio

  • Kwon, Yong Man
    • 통합자연과학논문집
    • /
    • 제13권3호
    • /
    • pp.92-96
    • /
    • 2020
  • Taguchi's robust parameter design is an approach to reduce the performance variation of quality characteristics in products and processes. In robust design, the signal-to-noise ratio (SN ratio) was used to find the optimum condition to minimize the variation of quality characteristics as much as possible and bring the average of quality characteristics closer to the target value. In this paper, we propose a simultaneous optimization method based on a linear model of the SN ratio as a method to find the optimal condition of the control factor in case of multi-characteristics. In addition, the proposed method and the existing method were compared and studied by taking actual cases.