Journal of the Korea Society of Computer and Information
/
v.29
no.1
/
pp.31-40
/
2024
In the realm of domestic online fashion platform industry the manual registration of product information by individual business owners leads to inconvenience and reliability issues, especially when dealing with simultaneous registrations of numerous product groups. Moreover, bias is significantly heightened due to the low quality of product images and an imbalance in data quantity. Therefore, this study proposes a ResNet50 model aimed at minimizing data bias through oversampling techniques and conducting multiple classifications for 13 fashion categories. Transfer learning is employed to optimize resource utilization and reduce prolonged learning times. The results indicate improved discrimination of up to 33.4% for data augmentation in classes with insufficient data compared to the basic convolution neural network (CNN) model. The reliability of all outcomes is underscored by precision and affirmed by the recall curve. This study is suggested to advance the development of the domestic online fashion platform industry to a higher echelon.
This paper proposes noise-robust fast speaker adaptation method based on the eigenvoice framework in various noisy environments. The proposed method is focused on de-noising and environment clustering. Since the de-noised adaptation DB still has residual noise in itself, environment clustering divides the noisy adaptation data into similar environments by a clustering method using the cepstral mean of non-speech segments as a feature vector. Then each adaptation data in the same cluster is used to build an environment-clustered speaker adapted (SA) model. After selecting multiple environmentally clustered SA models which are similar to test environment, the speaker adaptation based on an appropriate linear combination of clustered SA models is conducted. According to our experiments, we observe that the proposed method provides error rate reduction of $40{\sim}59%$ over baseline with speaker independent model.
Young-Rim Choi;Ye-Eun Park;Jong-Wook Kim;Sunhee Lee
Journal of the Korean Society of Clothing and Textiles
/
v.48
no.2
/
pp.312-327
/
2024
In this study, a rehabilitation 3D printed wearable device was developed by combining an assembly-type robot hand and an integral-type robot hand through fused deposition 3D printing manufacturing with various hardness TPU (Thermoplastic Polyurethane) filaments. The hardware configuration of the robot hand includes a controller designed with four motors, one small servo motor, and a circuit board. In the case of the assembly-type robot hand model, a 3D printed robot hand was assembled using samples printed with TPU of hardness 87A and 95A. It was observed that TPU with a hardness of 95A was suitable for use due to shape stability. For the integrated-type robot hand model, the external sample using TPU of hardness 95A could be modified through a cutting method, and the hardware configuration is the same as the assembly-type. The system structure of the 3D printed robot hand was improved from an individual control method to a simultaneous transmission method.Furthermore, the system architecture of an integrated 3D printed robotic hand rehabilitation device and the application of the rehabilitation device were developed.
Purpose: To investigate the effects of simultaneous soft and hard tissue augmentation and the addition of polydeoxyribonucleotide (PDRN) on regenerative outcomes. Materials and Methods: In five mongrel dogs, chronic ridge defects were established in both mandibles. Six implants were placed in the mandible, producing buccal dehiscence defects. The implants were randomly allocated to one of the following groups: 1) control: no treatment; 2) GBR: guided bone regeneration (GBR) only; 3) GBR/PDRN: GBR+PDRN application to bone substitute particles; 4) GBR/CTG: GBR+connective tissue grafting (CTG); 5) GBR/VCMX: GBR+soft tissue augmentation using volume stable collagen matrix (VCMX); and 6) group GBR/VCMX/PDRN: GBR+VCMX soaked with PDRN. The healing abutments were connected to the implants to provide additional room for tissue regeneration. Submerged healing was achieved. The animals were euthanized after four months. Histological and histomorphometric analyses were then performed. Results: Healing abutments were gradually exposed during the healing period. Histologically, minimal new bone formation was observed in the dehiscence defects. No specific differences were found between the groups regarding collagen fiber orientation and density in the augmented area. No traces of CTG or VCMX were detected. Histomorphometrically, the mean tissue thickness was greater in the control group than in the other groups above the implant shoulder (IS). Below the IS level, the CTG and PDRN groups exhibited more favorable tissue thickness than the other groups. Conclusion: Failure of submerged healing after tissue augmentation deteriorated the tissue contour. PDRN appears to have a positive effect on soft tissues.
For consistent vegetation monitoring, it is necessary to generate time-series vegetation index datasets at fine temporal and spatial scales by fusing the complementary characteristics between temporal and spatial scales of multiple satellite data. In this study, we quantitatively and qualitatively analyzed the prediction accuracy of time-series change information extracted from spatio-temporal fusion models of multiple satellite data for vegetation monitoring. As for the spatio-temporal fusion models, we applied two models that have been widely employed to vegetation monitoring, including a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and an Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM). To quantitatively evaluate the prediction accuracy, we first generated simulated data sets from MODIS data with fine temporal scales and then used them as inputs for the spatio-temporal fusion models. We observed from the comparative experiment that ESTARFM showed better prediction performance than STARFM, but the prediction performance for the two models became degraded as the difference between the prediction date and the simultaneous acquisition date of the input data increased. This result indicates that multiple data acquired close to the prediction date should be used to improve the prediction accuracy. When considering the limited availability of optical images, it is necessary to develop an advanced spatio-temporal model that can reflect the suggestions of this study for vegetation monitoring.
Artificial Organism-used application areas are expanding at a break-neck speed with a view to getting things done in a dynamic and Informal environment. A use of general programming or traditional hi methods as the representation of Artificial Organism behavior knowledge in these areas can cause problems related to frequent modifications and bad response in an unpredictable situation. Strategies aimed at solving these problems in a machine-learning fashion includes Genetic Programming and Evolving Neural Networks. But the learning method of Artificial-Organism is not good yet, and can't represent life in the environment. With this in mind, this research is designed to come up with a new behavior evolution model. The model represents behavior knowledge with Classification Rules and Enhanced Backpropation Neural Networks and discriminate the denomination. To evaluate the model, the researcher applied it to problems with the competition of Artificial-Organism in the Simulator and compared with other system. The survey shows that the model prevails in terms of the speed and Qualify of learning. The model is characterized by the simultaneous learning of classification rules and neural networks represented on chromosomes with the help of Genetic Algorithm and the consolidation of learning ability caused by the hybrid processing of the classification rules and Enhanced Backpropagation Neural Network.
The purpose of this study is to present an appropriate management plan as a supplement to the scientific evidence of the currently operated distancing system for preventing COVID-19. The currently being used mathematical models are expressed as simultaneous ordinary differential equations, there is a problem in that it is difficult to use them for the management of entry and exit of small business owners. In order to supplement this point, in this paper, a method for quantitatively expressing the risk of infection by people who gather is presented in consideration of the allowable risk given to the gathering space, the basic infection reproduction index, and the risk reduction rate due to vaccination. A simple quantitative model was developed that manages the probability of infection in a probabilistic level according to a set of visitors by considering both the degree of infection risk according to the vaccination status (non-vaccinated, primary inoculation, and complete vaccination) and the epidemic status of the virus. In a given example using the model, the risk was reduced to 55% when 20% of non-vaccinated people were converted to full vaccination. It was suggested that management in terms of quarantine can obtain a greater effect than medical treatment. Based on this, a generalized model that can be applied to various situations in consideration of the type of vaccination and the degree of occurrence of confirmed cases was also presented. This model can be used to manage the total risk of people gathered at a certain space in a real time, by calculating individual risk according to the type of vaccine, the degree of inoculation, and the lapse of time after inoculation.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.5B
/
pp.397-408
/
2009
In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.
As naval warfare changes to composite warfare that includes simultaneous engagements against surface, underwater, and air enemies, performance and tactical analysis are required to respond to naval warfare. In particular, for practical analysis of composite warfare, it is necessary to study engagement simulations that can appropriately utilize the limited performance resources of the detection system. This paper proposes a DEVS (Discrete Event Systems Specifications)-based simulation model for composite warfare analysis. The proposed model contains generalized models of combat platforms and armed objects to simulate various complex warfare situations. In addition, we propose a detection performance allocation algorithm that can be applied to a detection system model, considering the characteristics of composite warfare in which missions must be performed using limited detection resources. We experimented with the effectiveness of composite warfare according to the strength of the detection system's resource allocation, the enemy force's size, and the friendly force's departure location. The simulation results showed the effect of the resource allocation function on engagement time and success. Our model will be used as an engineering basis for analyzing the tactics of warships in various complex warfare situations in the future.
This paper examines a simultaneous determination of corporate control mechanisms, and its effects on firm performance. The corporate control mechanisms considered include the following; insider shareholding, institutional shareholding, the board of directors, dividend policy, and capital structure. This paper applies a simultaneous equation methodology and investigates the interdependence among the corporate control mechanisms. In the first part, the paper finds that firm-level variations of control mechanisms are large across time although average variations are relatively small. These variations are related to one another, which is confirmed by Granger causality test based on dynamic panel autoregression model. More specifically insider shareholding, institutional shareholding and outside director ratio cause each other. With regard to interdependence among the control mechanisms, 2SLS(two stage least squares) regression results show that insider shareholding and institutional shareholding are substitutes while institutional shareholding acts as complements to the ratio of outside members in the board of directors. Then in the second part, the paper examines the relationship between firm performance and corporate governance. Firm performance, measured by Tobin's Q, has a positive association with leverage ratio while that has a negative relation to outside director ratio. This suggests that there may be a room for reforming corporate governance in Korea. Specifically it is necessary to enhance the independence of the outside directors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.