• 제목/요약/키워드: Simulation tool

검색결과 3,303건 처리시간 0.038초

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

PETSIM : 생산시스템의 설계 및 분석을 위한 Simulation 도구

  • 임동순
    • 한국시뮬레이션학회논문지
    • /
    • 제2권1호
    • /
    • pp.1-12
    • /
    • 1993
  • Simulation has been recognized as an invaluable tool in designing and analyzing manufacturing system. In this paper, a Petri net based simulation tool to facilitate the simulation project in manufacturing area is presented . To simulate a manufacturing system, three models are developed ; a Petrinet model, a monitor, and a token control function. While hardware objects in manufacturing systems are modeled by Petri net objects, cell level control functions are separately modeled and integrated with a Petri net model so that they resolve conflicts occuring in Petri net execution. The monitor is a model regarding the information flow between Petri nets and token control functions. The facilities of the developed tool are presented. Also, a modeling procedure with the tool is illustrated via a case study.

  • PDF

Optimal design for face milling cutter by simulation

  • Kim, J.H.;Lee, B.C.;Kim, H.S.
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.76-85
    • /
    • 1993
  • Based on the cutting force model, three-dimensional optimal design model was developed and optimal designed tool which is minimized cutting force is developed by computer simulation technique. In this model the objective function which is minimized resultant cutting force was used and the variables are radial rake angle, axial rake angle, lead angle of the tool. The cutting forces using conventional and optimal tools by simulation, are compared and analyzed in time and frequency domains. In time domain the cutting force of optimal tool in feed direction was more reduced and less fluctuated than that of conventional tool. Cutting forces of optimal tool in X-and Z-directions are shown a little increased than those of conventional tool. In frequency domain amplitude of insert frequency components of optimal tool in feed direction was more reduced than that of convent- ional tool. The amplitudes of insert frequency components of optimal tool in X-and Z-direction are a little increased than those of conventional tool. As the reduction of amplitude and fluctuations of the cutting force, Optimal tool is considered that tool life and surface roughness would be improved, and stable cutting would be expected.

  • PDF

SSMS에서 동적 공구할당을 고려한 부품투입 알고리즘의 시뮬레이션 분석 (Simulation Analysis of Part Release Algorithm under Dynamic Tool Allocation in SSMS)

  • 이충수
    • 한국시뮬레이션학회논문지
    • /
    • 제8권1호
    • /
    • pp.63-76
    • /
    • 1999
  • Recently in manufacturing environment, manufacturing order is characterized by unstable market demand, shorter product life cycle, a variety of product and shorter production lead time. In order to adapt this manufacturing order, flexible manufacturing systems(FMS) in manufacturing technology advances into the direction that machines become further versatile functionally and that tools are controlled by fast tool delivery device. Unlike conventional FMS to mainly focus on part flow, it is important to control tool flow in single-stage multimachine systems(SSMS), consisting of versatile machines and fast tool delivery device. This research is motivated by the thought that exact estimation of tool competition at part release in SSMS enhances the system performance. In this paper, in SSMS under dynamic tool allocation strategy to share tools among machines, we propose real-time part release and tool allocation algorithms which can apply real factory and which can improve system performance.

  • PDF

워엄 스크루 가공용 사이드 밀링의 공구 간섭 시뮬레이션 (The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Side Milling)

  • 이민환;김선호;안중환
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.11-18
    • /
    • 2011
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for side milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

워엄 스크루 가공을 위한 플래내터리 밀링의 공구 간섭 시뮬레이션 (The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Planetary Milling)

  • 이민환;김선호;안중환
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.47-54
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for planetary milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

무선망 설계/최적화 시뮬레이션 툴 의 다양한 신뢰도 향상 기법 (Various Techniques for Improving of the Reliability of the Wireless Network Design/Optimization Simulation Tool)

  • 전현철;류재현;박상진;박주열;김정철
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2006년도 하계학술대회
    • /
    • pp.39-42
    • /
    • 2006
  • There are various analysis functions(including prediction of path loss, analyzing of capacity and coverage, etc.) of simulation tool to design and optimize the mobile communication network. Its reliability absolutely effects the performance of mobile communication network. Especially as the wireless network highly advancing focused on data service, it more needs to research and develop on the standard establishment of reliability of the simulation tool. Also it is important the systematic research how to improve the reliability of simulation tool. In this paper, to give the concrete process and skill about how to improve reliability, we define the kinds of reliability at first. And then we explain the comparison results between real field measurement data and theoretic simulation data.

  • PDF

NC 밀링에서 짧은 공구설치 방법으로 생산성 향상 (NC Milling Productivity Incensement by Short Milling Tool Setting Method)

  • 김수진
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.60-68
    • /
    • 2008
  • The tool overhang length affects tool deflection and chatter that should be reduced for machined surface quality, productivity and long tool lift. The shortest tool setting algorithm that uses a safe space is proposed and applied with simulation software in NC machining. The safe space in the coordinate fixed in the tool is computed by the virtual machining system that simulates NC machining by stock model, tool model and NC code. The optimal tool assembly that has largest diameter and shortest length is possible using the safe space. This algorithm has been applied over fifty companies for safe and rigid tool setting. The collision accident between holder and stock was reduced from 3 to 0 a year and the productivity was incensed about 15% by using faster feed rate acceptable for shorten tool length.

IMPROVEMENT OF TOOL LIFE IN COLD FORGING

  • Kim Soo Young;Yamanaka Masahito;Arima Tatsuo;Matsuda Toru
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.175-178
    • /
    • 2003
  • Tool life in cold forging is influenced by tool quality as well as forging conditions and quality of forging material. This paper presents some typical examples of tool life improvement in aspect of tool quality depending on tool design and tool manufacturing parameters. For the purpose of improving tool life, suggestions should be based on accurate understanding of tool operating conditions in cold forging process. FE simulation known as CAE is effective in order to make clear the conditions by some numerically calculated result.

  • PDF

자동차 금형 생산공정의 물류분석 (Performance Analysis of a Die FAbrication Process In Automotive Production)

  • 김상훈
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.36-40
    • /
    • 1998
  • Tool shop of the‘D’Motor Co.(DMC) fabricates dies for producing automotive press panels. In order to increase the production capacity of the tool shop, DMC established an FMS that consists of high-speed machines and a CMM at the tool shop in 1997. Due to the difference in machine capability among the existing machines and the new FMS it is needed to find an optimal way of allocating workloads among machines to maximize the production. In a way to solve this, we model the die fabrication process of the tool shop and analyze its performance by computer simulation. In this study, we at first identify the bottleneck processes of the die fabrication process under the current operation policy. Then, we derive some alternative operating policies applicable to the tool shop, and analyze the optimal operation policy by comparing the performance of the tool shop following each alternative policy.

  • PDF