• Title/Summary/Keyword: Simulation platform

Search Result 900, Processing Time 0.024 seconds

Loads and motions for a spar-supported floating offshore wind turbine

  • Sultania, Abhinav;Manuel, Lance
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.525-541
    • /
    • 2016
  • An offshore wind turbine supported by a spar buoy floating platform is the subject of this study on tower and rotor extreme loads. The platform, with a 120-meter draft and assumed to be sited in 320 meters of water, supports a 5 MW wind turbine. A baseline model for this turbine developed at the National Renewable Energy Laboratory (NREL) is employed in stochastic response simulations. The support platform, along with the mooring system consisting of three catenary lines, chosen for loads modeling, is based on the "Hywind" floating wind turbine concept. Our interest lies in gaining an understanding of the dynamic coupling between the support platform motion and the turbine loads. We first investigate short-term response statistics using stochastic simulation for a range of different environmental wind and wave conditions. From this study, we identify a few "controlling" environmental conditions for which long-term turbine load statistics and probability distributions are established.

Mobile Multicast Mechanism in IP based-IMT Network Platform (IP기반-IMT 네트워크에서의 모바일 멀티캐스트 기법)

  • Yoon Young-Muk;Park Soo-Hyun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.3-7
    • /
    • 2005
  • The structure of $IP^2$(IP based-IMT Network Platform) as ubiquitous platform is three-layered model : Middleware including NCPF(Network Control Platform) and SSPF(Service Support Platform), IP-BB(IP-Backbone), Access network including Sensor network. A mobility management(MM) architecture in NCPF is proposed for $IP^2$. It manages routing information and location information separately. The existing method of multicast control in $IP^2$ is Remote Subscription. But Remote Subscription has problem that should be reconstructed whole Multicast tree when sender moves. To solve this problem, we propose a way to put Multicast Manager in NCPF.

  • PDF

Submarine Behavior Simulation based on 4-DOF Motion Platform and Stereoscopic Multi-Channel Visualization (4자유도 모션 플랫폼을 이용한 잠수함의 운동감 재현과 스테레오 다채널 가시화)

  • Xu, Zhenshun;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.333-341
    • /
    • 2012
  • Modeling and simulation is important for military training. People can feel perspective when stereoscope images are created using multi-channel visualizations. A submarine oscillates when the submarine is just below the surface of the sea, so that the reconnaissance becomes difficult. Also, the operator should read the information of the target within 6 seconds using the periscope. The operator must have experience. To solve these problems, stereoscopic multi-channel visualization has been tested. The iCAVE system of KAIST provides a large-scale screen, 7 PCs, and 14 projectors to create the stereoscope images. To simulate the motion of a submarine just below the ocean surface, a 4-DOF motion platform is used. The motion data is transmitted to the visual system and the motion platform through the UDP protocol. Variety of weather conditions are created using the Vega Prime software. The stereoscopic multi-channel visualization and the motion platform system created a realistic simulation system.

A Hardware-in-the-loop Platform for Modular Multilevel Converter Simulations

  • Liu, Chongru;Tian, Pengfei;Wang, Yu;Guo, Qi;Lin, Xuehua;Wang, Jiayu
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1698-1705
    • /
    • 2016
  • In this paper, a hardware-in-the-loop simulation platform for MMCs is established, which connects a real time digital simulator (RTDS) and a designed MMC controller with optical fiber. In this platform, the converter valves are simulated with a small time step of 2.5 microsecond in the RTDS, and multicore technology is implemented for the controller so that the parallel valve control is distributed between different cores. Therefore, the designed controller can satisfy the requirements of real-time control. The functions of the designed platform and the rationality for the designed controller are verified through experimental tests. The results show that different modulation modes and various control strategies can be implemented in the simulation platform and that each control objective can been tracked accurately and with a fast dynamic response.

Simulation and assessment of gas dispersion above sea from a subsea release: A CFD-based approach

  • Li, Xinhong;Chen, Guoming;Zhang, Renren;Zhu, Hongwei;Xu, Changhang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.353-363
    • /
    • 2019
  • This paper presents a comprehensive simulation and assessment of gas dispersion above sea from a subsea release using a Computational Fluid Dynamics (CFD) approach. A 3D CFD model is established to evaluate the behavior of flammable gas above sea, and a jack-up drilling platform is included to illustrate the effect of flammable gas cloud on surface vessels. The simulations include a matrix of scenarios for different surface release rates, distances between surface gas pool and offshore platform, and wind speeds. Based on the established model, the development process of flammable gas cloud above sea is predicted, and the dangerous area generated on offshore platform is assessed. Additionally, the effect of some critical factors on flammable gas dispersion behavior is analyzed. The simulations produce some useful outputs including the detailed parameters of flammable gas cloud and the dangerous area on offshore platform, which are expected to give an educational reference for conducting a prior risk assessment and contingency planning.

Analysis of HW/SW Platform for Vessel USN and Performance Evaluation of IEEE 802.15.4 Physical Layer (선박 USN HW/SW 플랫폼 분석과 IEEE 802.15.4 물리계층의 성능분석)

  • Choi, Myeong-Soo;Cho, Sung-Eui;Oh, Il-Whan;Kim, Seo-Gyun;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.449-454
    • /
    • 2009
  • In this paper, we analyze the hardware and software platform for constructing the USN in the vessel environment. Specifically, we analyze the mote technology based on the CC2420 in the hardware platform and analyze the TinyOS platform in the software platform. We also analyze the physical layer of IEEE802.15.4 which is the standard of the USN communication. In the simulation, we evaluate the performance in the physical layer of ZigBee/IEEE 802.15.4 by using the MATLAB and verify the validity of constructing the USN in the vessel environment based on the simulation results.

Development and performance analysis of a crawler-based driving platform for upland farming (밭 농업용 무한궤도 기반 주행 플랫폼 개발 및 성능 분석)

  • Taek Jin Kim;Hyeon Ho Jeon;Md Abu Ayub Siddique;Jang Young Choi;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.100-106
    • /
    • 2023
  • We developed a crawler-based driving platform that can perform harvesting, transportation, pest control, and rotary operation by equipping it with various implements, and analyzed its performance. This single platform was developed to perform as pepper harvester, peanut harvester, and transporter with a 46-kW engine. A simulation model was developed to study the specifications of the platform, and the accuracy was also analyzed. The absolute percentage error ranged from 0.2 to 5.9%, which made it possible to predict the platform performance using simulation model. In T-test, both torque and speed on field and asphalt showed a significant difference (1%). Driving torque required differed depending on the nature of the field, and the speeds also changed based on soil load. The developed platform has the advantage of being equipped with a variety of working tools, expected to be used to harvest root crops in the future.

LARGE EDDY SIMULATION OF ORDINARY & EMERGENCY VENTILATION FLOW IN UNDERGROUND SUBWAY STATION (지하역사 승강장 및 대합실 평상시 비상시 급·배기 환기 Large Eddy Simulation)

  • Jang, Yong-Jun;Ryu, Ji-Min;Park, Duck-Shin
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.72-78
    • /
    • 2013
  • The turbulent flow behavior of air supply and exhaustion in the Shin-gum-ho subway station is analyzed for ordinary and emergency state. The depth of Shin-gum-ho station is 43.6m which consists of the island-type platform(8th floor in underground) and a two-story lobby (first & second floor in underground). An emergency stairway connects between the platform and the lobby. Ventilation operation mode for ordinary state is set up as a combination of air supply and exhaustion in the lobby and platform, while for emergency state it is set up as a full air supply in the lobby and a full exhaustion in the platform. The entire station is covered for simulation. The ventilation diffusers are modeled as 95 square shapes of $0.6m{\times}0.6m$ in the lobby and as 222 square shapes of $0.6m{\times}0.6m$ and 4 rectangular shapes of $1.2m{\times}0.8m$ in the platform. The total of 7.5million grids are generated and whole domain is divided to 22 blocks for MPI efficiency of calculation. Large eddy simulation(LES) is applied to solve the momentum equation and Smagorinsky model($C_s$=0.2) is used as SGS(subgrid scale) model. The time-averaged velocity fields are compared to experimental data and show a good agreement with it.

Construction of Open-source Program Platform for Efficient Numerical Analysis and Its Case Study (효율적 수치해석을 위한 오픈소스 프로그램 기반 해석 플랫폼 구축 및 사례 연구)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.509-518
    • /
    • 2020
  • This study constructed a new simulation platform, including mesh generation process, numerical simulation, and post-processing for results analysis based on exploration data to perform real-scale numerical analysis considering the actual geological structure efficiently. To build the simulation platform, we applied for open-source programs. The source code is open to be available for code modification according to the researcher's needs and compatibility with various numerical simulation programs. First, a three-dimensional model(3D) is acquired based on the exploration data obtained using a drone. Then, the domain's mesh density was adjusted to an interpretable level using Blender, the free and open-source 3D creation suite. The next step is to create a 3D numerical model by creating a tetrahedral volume mesh inside the domain using Gmsh, a finite element mesh generation program. To use the mesh information obtained through Gmsh in a numerical simulation program, a converting process to conform to the program's mesh creation protocol is required. We applied a Python code for the procedure. After we completed the stability analysis, we have created various visualization of the study using ParaView, another open-source visualization and data analysis program. We successfully performed a preliminary stability analysis on the full-scale Dokdo model based on drone-acquired data to confirm the usefulness of the proposed platform. The proposed simulation platform in this study can be of various analysis processes in future research.