• Title/Summary/Keyword: Simulation in Laboratory

Search Result 2,170, Processing Time 0.024 seconds

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

Finite Element Model to Simulate Crack Propagation Using Interface Elements and Its Verification in Tensile Test

  • Chu, Shi;Yu, Luo;Zhen, Chen
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.36-43
    • /
    • 2015
  • Since the crack generation and its propagation caused by welding defects is one of the main hull damage patterns, the simulation of crack propagation process has an important significance for ship safety. Based on interface element method, a finite element model to simulate crack propagation is studied in the paper. A Lennard-Jones type potential function is employed to define potential energy of the interface element. Tensile tests of steel flat plates with initial central crack are carried out. Surface energy density and spring critical stress that are suitable for the simulation of crack propagation are determined by comparing numerical calculation and tests results. Based on a large number of simulation results, the curve of simulation correction parameter plotted against the crack length is calculated.

The Influence of Forest Fire Simulation on the Properties of Polymer Insulators

  • Lee, Won-Kyo;Choi, In-Hyuk;Lee, Dong-Il;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.161-164
    • /
    • 2009
  • Forest fire simulation tests were performed with polymer and porcelain insulators at GOCHANG Power Testing Center. These tests consisted of open flames causing a temperature rise of up to $600{\sim}800^{\circ}C$ measured at the insulator surfaces. Mechanical and electrical characteristics such as the specific mechanical load, the low frequency dry flashover voltage and the impulse flashover voltage were analyzed for the polymer insulators before, during and after the simulation tests and then compared to the porcelain insulators. At the end of the fire simulation tests, there was no detrimental deterioration of any of the insulators. All the insulators passed the KEPCO specification criteria. This study showed that the forest fire simulation had no impact on the polymer insulators.

A new perspective towards the development of robust data-driven intrusion detection for industrial control systems

  • Ayodeji, Abiodun;Liu, Yong-kuo;Chao, Nan;Yang, Li-qun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2687-2698
    • /
    • 2020
  • Most of the machine learning-based intrusion detection tools developed for Industrial Control Systems (ICS) are trained on network packet captures, and they rely on monitoring network layer traffic alone for intrusion detection. This approach produces weak intrusion detection systems, as ICS cyber-attacks have a real and significant impact on the process variables. A limited number of researchers consider integrating process measurements. However, in complex systems, process variable changes could result from different combinations of abnormal occurrences. This paper examines recent advances in intrusion detection algorithms, their limitations, challenges and the status of their application in critical infrastructures. We also introduce the discussion on the similarities and conflicts observed in the development of machine learning tools and techniques for fault diagnosis and cybersecurity in the protection of complex systems and the need to establish a clear difference between them. As a case study, we discuss special characteristics in nuclear power control systems and the factors that constraint the direct integration of security algorithms. Moreover, we discuss data reliability issues and present references and direct URL to recent open-source data repositories to aid researchers in developing data-driven ICS intrusion detection systems.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Applications of a Coupled Multizone and CFD Simulation to Validate Airflow and Influenza A Contaminant Dispersion in Biosafety Laboratory (생물안전밀폐시설에서 Multizone과 CFD 연동해석에 의한 실내기류 및 Influenza A 오염농도해석)

  • Hwang, Ji Hyun;Hong, Jin Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.588-593
    • /
    • 2014
  • To maintain a negative pressure, the supply, exhaust airvolume are adjusted by setting volume damper and the infiltration through leakage area of the door between rooms in biosafety laboratory. Multizone simulation is useful way to predict room pressure, supply and exhaust air volume. But in a particular room, local change such as airflow and contaminants concentration distribution can not be evaluated unfortunately. Through this study, a coupled multizone and CFD simulation was performed, indoor air flow and local contaminants concentration distribution in a particular room of BSL lab are predicted. The results show that all zones of BSL lab are well ventilated by unidirectional flow without local stagnation. In addition, in case that unexpected biohazard is occured in BSL lab, multizone simulation results about the spread of pollutants along movement of the occupant also show that contaminants concentration is removing totally without the spread of the outside. In conclusion, a coupled multizone and CFD simulation can be applied to interpret differential pressure in room and local change of physical quantity in a particular room such as airflow and Influenza A contaminants concentration distribution. This simulation method is useful to enhance the reliability and accuracy of biosafety laboratory design.

Improved optical design and performances of Amon-Ra instrument energy channel

  • Seong, Se-Hyun;Hong, Jin-Suk;Ryu, Dong-Ok;Park, Won-Hyun;Lee, Han-Shin;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this report, we present newly improved optical design for the Amon-Ra energy channel and its optical performance. The design is optimized parametrically with emphasis on improved light concentration. And then its performances are computed, first, from a laboratory test simulation using laser method (wave optics approach) and, second, from an in-orbit radiative transfer simulation using IRT method with 3D Earth model (geometrical optics approach). Two simulation test results show clear evidence of energy concentration improvement.

  • PDF

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.745-750
    • /
    • 2009
  • In Korea, since the implementation of the GMO Law, the intrest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. was performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab.(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios was performed in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.

  • PDF

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

A Study on Verification for the Design of Bio Safety Level 3 Laboratory by using Multi-zone Simulation (멀티죤 시뮬레이션을 이용한 생물안전 3등급(BSL3)시설의 설계 검증에 관한 연구)

  • Lee, Hyun-Woo;Choi, Sang-Gon;Hong, Jin-Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.671-677
    • /
    • 2009
  • In Korea, since the implementation of the LMO Law, the interest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. is performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab,(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios is carried out in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.