• Title/Summary/Keyword: Simulation analysis

Search Result 20,590, Processing Time 0.055 seconds

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

The error analysis of field size variation in pelvis region by using immobilization device (고정기구의 사용이 골반부위 방사선조사영역의 변화에 미치는 오차분석)

  • Kim, Ki-Hwan;Kang, No-Hyun;Bim, Dong-Wuk;Kim, Jun-Sang;Jang, Ji-Young;Kim, Yong-Eun;Kim, Jae-Sung;Cho, Moon-June
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.1
    • /
    • pp.31-36
    • /
    • 2000
  • In radiotherapy, it may happen to radiate surrounding normal tissue because of inconsistent field size by changing patient position during treatment. We are going to analyze errors reduced by using immobilization device with Electonic portal imaging device(EPID) in this study. We had treated the twenty-one patients in pelvic region with 10 MV X-ray from Aug. 1998 to Aug. 1999 at Chungnam National University Hospital. All patients were treated at supine position during treatment. They were separated to two groups, 11 patients without device and 10 patients with immobilization device. We used styrofoam for immobilization device and measured the errors of anterior direction for x, y axis and lateral direction for z, y axis from simulation film to EPID image using matching technique. For no immobilization device group, the mean deviation values of x axis and y axis are 0.19 mm. 0.48 mm, respectively and the standard deviations of systematic deviation are 2.38 mm, 2.19 mm, respectively and of random deviation for x axis and y axis are 1.92 mm. 1.29 mm, respectively. The mean deviation values of z axis and y axis are -3.61 mm. 2.07 mm, respectively and the standard deviations of systematic deviation are 3.20 mm, 2.29 mm, respectively and of random deviation for z axis and y axis are 2.73 mm. 1.62 mm, respectively. For immobilization device group, the mean deviation values of x axis and y axis are 0.71 mm. -1.07 mm, respectively and the standard deviations of systematic deviation are 1.80 mm, 2.26 mm, respectively and of random deviation for x axis and y axis are 1.56 mm. 1.27 mm, respectively. The mean deviation values of z axis and y axis are -1.76 mm. 1.08 mm, respectively and the standard deviations of systematic deviation are 1.87 mm, 2.83 mm, respectively and of random deviation for x axis and y axis are 1.68 mm, 1.65 mm, respectively. Because of reducing random and systematic error using immobilization device, we had obtained good reproducibility of patient setup during treatment so that we recommend the use of immobilization device in pelvic region of radiation treatment.

  • PDF

Psychometric Evaluation of a Six Dimension Scale of Nursing Performance and Student Nurse Stress Index Using an Objective Structured Clinical Examination - Modules for Asthma and Type 1 Diabetes (객관구조화 임상시험을 활용한 간호수행능력의 Six Dimension Scale과 간호학생 스트레스 평가지수의 도구 평가-천식 및 1형 당뇨 모듈을 중심으로)

  • Park, Kyong-Ok;Ahn, Young-Mee;Kang, Na-Rae;Lee, Mi-Jin;Sohn, Min
    • Child Health Nursing Research
    • /
    • v.19 no.2
    • /
    • pp.85-93
    • /
    • 2013
  • Purpose: The study purposes were to describe the process of developing the Korean versions of the Six Dimension Scale of Nursing Performance (Six-D) and Student Nurse Stress Index (SNSI) and psychometric evaluation of the two measurements. Methods: This was a methodology study using a descriptive cross-sectional design with 51 nursing students in 4th year of university. Internal consistency reliability was assessed using Cronbach alphas. Construct validity was determined by exploring correlations among Six-D, SNSI, objective structured clinical examination (OSCE), self-efficacy and grade point average (GPA). Results: Internal consistency reliability of Six-D and SNSI was acceptable with Cronbach's ${\alpha}$ of .95 and .82. Correlation analysis to determine construct validity revealed that Six-D presented positive correlations with OSCE (r=.109~.272) and self-efficacy (r=.005~.161) and negative correlation with GPA (r=-.246~-.394), although all were not statistically significant. SNSI presented all negative correlations with OSCE (r= -.007~-.238), self-efficacy (r=-.246~-.394), and GPA (r=-.092~-.426) and were mostly statistically significant except OSCE. Conclusion: Six-D needs more evidence to confirm validity to predict observed clinical competency and theoretical relationships with self-efficacy and GPA. However, SNSI presented trends of expected relationships with relevant variables. Therefore, further research is recommended in testing validity of Six-D with other student populations.

Pelvic MRI Application to the Dosimetric Analysis in Brachytherapy of Uterine Cervix Carcinoma (자궁경부암의 강내조사치료에 있어서 흠수선량평가시 골반강 자기공명사진의 응용)

  • Chung, Woong-Ki;Nah, Byung-Sik;Ahn, Sung-Ja
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.57-64
    • /
    • 1997
  • Purpose : Before we report the results of curative radiotherapy in cervix cancer patients, we review the significance and safety of our dose specification methods in the brachytherapy system to have the insight of the potential Predictive value of doses at specified points. Matersials and Methods : We analyze the 리5 cases of cervix cancer patients treated with intracavitary brachytherapy in the lateral simulation film we draw the isodose curve and observe the absorbed dose rate of point A, the reference point of bladder(SBD) and rectum(SRD). In the sagittal view of Pelvic MRI film we demarcate the tumor volume(TV) and determine whether the prescription dose curve of point A covers the tumor volume adequately by drawing the isodose curve as correctly as possible. Also we estimate the maximum Point dose of bladder(MBD) and rectum(MRD) and calculate the inclusion area where the absorbed dose rate is higher than that of point A in the bladder(HBV) and rectum(HRV), respectively. Results : Of forty-five cases, the isodose curve of point A seems to cover tumor volume optimally in only 24(53%). The optimal tumor coverage seems to be associated not with the stage of the disease but with the tumor volume. There is no statistically significant association between SBD/SRD and MBD/MRD, respectively. SRD has statistically marginally significant association with HRV, while TV has statistically significant association with HBV and HRV. Conclusion : Our current treatment calculation methods seem to have the defect in the aspects of the nonoptimal coverage of the bulky tumor and the inappropriate estimation of bladder dose. We therefore need to modify the applicator geometry to optimize the dose distribution at the position of lower tandem source. Also it appears that the position of the bladder in relation to the applicators needs to be defined individually to define 'hot spots'.

  • PDF

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Economic Effects of Eliminating Trade Barriers under Imperfect Competition (불완전경쟁하(不完全競爭下)에서의 무역장벽(貿易障壁) 완화효과(緩和效果))

  • Lee, Hong-gue
    • KDI Journal of Economic Policy
    • /
    • v.14 no.2
    • /
    • pp.29-54
    • /
    • 1992
  • Recent studies on the economic effects of trade liberalization and economic integration have emphasized the significant gains associated with product differentiation and scale economies. Securing access to markets in other countries will make it possible to increase product variety and capture scale economies, thus, expanding the gains from trade. Liberalization is also expected to introduce foreign competition into the previously closed market. Concurrently, the liberalization will improve the competitive market environment for firms selling in the domestic market. Firms will be pressed to either exit or reduce cost. The output per firm, then, will increase due to the exit of rival firms, and the average total cost will decline due to the economies of scale. 'Rationalization' of the production process will eventually follow. This paper addresses the economic effects of (counterfactual) bilateral tariff elimination between Korea and Japan. It computationally assesses the gains from liberalization as well as the resource allocations and welfare effects associated with the tariff reduction. The endogenous determination of the key parameters distinguishes this paper from others. The firm's perceived elasticity of demand and elasticity of substitution in the present model are calibrated to be consistent with the base year data. Korea, Japan, and the rest of the world are modeled explicitly. The sectoral coverage of the model includes twenty-three tradable product categories based on three-digit SITC industries and seven nontradable categories based on one-digit SITC industries. Product categories are also classified into perfectly competitive and imperfectly competitive ones. In the imperfectly competitive industries, product differentiation exists at the firm level, while the perfectly competitive industries are characterized by national product differentiation. The simulation results of bilateral tariff reduction are reported. Tariff elimination tends to increase intra-industry trade flows so that the total amount of exports and imports of both countries expand. Yet, Japan is expected to increase the bilateral trade surplus in the wake of the mutual tariff reduction. Terms-of-trade for Korea will not change, while for Japan it will deteriorate. Equivalent variations reflecting the change in consumer surplus (welfare) will favor Korean consumers. Total output, however, will not change substantially, recording 0.5 and 0.6% for Japan and Korea, respectively. An interesting finding in the analysis is that the gains from increased competition and scale efficiency are not as prevailing as expected in theory.

  • PDF

A study of lower facial change according to facial type when virtually vertical dimension increases (가상적 수직 교합 고경 증가 시 안모의 유형에 따른 하안모 변화에 관한 연구)

  • Kim, Nam-Woo;Lee, Gung-Chol;Moon, Cheol-Hyun;Bae, Jung-Yoon;Kim, Ji-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the effect of increased vertical dimension of occlusion on lower facial changes by facial type. Materials and methods: Lateral cephalograms from 261 patients were obtained and classified by sagittal (Class I, II, and III) and vertical (hypodivergent, normodivergent, and hyperdivergent) facial patterns. Retrusive displacement of soft tissue Pogonion and downward displacement of soft tissue Menton were measured in each group after 2 mm of vertical dimension of occlusion was increased at the lower central incisor using a virtual simulation program. The ratio of both displacements was calculated in all groups. The statistical analysis was done by 2-way ANOVA and Post hoc was done by Tukey test (5% level of significance). Results: Retrusive displacement of soft tissue Pogonion in Class III group was statistically different compared to Class I and II, and in vertical facial groups all 3 groups were significantly different (P<.05). Downward displacement of soft tissue Menton showed statistically significant difference between all sagittal groups and vertical groups (P<.05). The ratio of both displacements showed statistically significant difference in all sagittal groups and vertical groups (P<.05), and Class II hyperdivergent group had the highest value. Conclusion: Lower facial change was statically significant according to the facial type when vertical dimension of occlusion increased. Class II hyperdivergent facial type showed the highest ratio after increase in vertical dimension of occlusion.

Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed (CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Bae, Deg-Hyo;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.453-466
    • /
    • 2006
  • The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$\sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$\sim$5%.

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).