• Title/Summary/Keyword: Simulation Test

Search Result 6,861, Processing Time 0.041 seconds

Precipitation Hardening by Holding After Simulated Complete Firing in a Metal-Ceramic Alloy of Pd-Au-Ag-Sn System (금속-세라믹용 Pd-Au-Ag-Sn계 합금의 모의소성 후 계류에 따른 석출경화)

  • Kim, Min-Jung;Shin, Hye-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.4
    • /
    • pp.343-349
    • /
    • 2016
  • This experiment was carried out to examine whether the post-firing heat treatment is effective in increasing the hardness of metal-ceramic alloy of the Pd-Au-Ag-Sn system. Precipitation hardening by holding at $600^{\circ}C$ after simulated complete porcelain firing in a metal-ceramic alloy of the Pd-Au-Ag-Sn system was examined by observing the change in hardness, crystal structure, and microstructure using a hardness test, X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The hardness of the alloy increased apparently by holding the specimen at $600^{\circ}C$ for 30 min after simulated complete porcelain firing. The formation of fine grain interior precipitates during holding at $600^{\circ}C$ caused the formation of lattice strain in the grain interior, resulting in apparent hardening. The faster cooling rate (stage 0) during simulated complete porcelain firing resulted in more effective precipitation hardening during holding at $600^{\circ}C$. From the above results, an appropriate post-firing heat treatment, such as holding at $600^{\circ}C$ for 30 min after complete porcelain firing may increase the durability of metal-ceramic prostheses composed of Pd-Au-Ag-Sn alloy.

The Optimized Analysis Zone Districting Using Variogram in Urban Remote Sensing (도시원격탐사에서 베리오그램을 이용한 최적의 분석범위 구역화)

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.107-115
    • /
    • 2008
  • Recently, a considerable number of studies have been conducted on the high resolution imagery showing the boundaries of objects clearly. When urban areas are analyzed in detail using the high resolution imagery, the size of analyzed zone is apt to be decided arbitrarily. Sufficient prior information about study area makes the decision of analysis zone possible; otherwise, it is difficult to determine the optimized analysis zone using only satellite imagery. In this study, the variograms of artificial simple images are analyzed before applying to the real satellite images. As a result of the analysis of simple images, the sill has an effect on the density of objects and also the size of objects and spacing influence the range. The variograms of real satellite images are analyzed with reference to the result of model test and are applied to determining the optimized analysis zone. This study shows that variogram can be applied to determining effectively the optimized analysis zone in case of no prior information on study area; moreover it will be expected to be used for an index to express the characteristics of urban imagery as well as conventional kriging and simulation.

Estimating Stability Indices from the MODIS Infrared Measurements over the Korean Peninsula (MODIS 적외 자료를 이용한 한반도 지역의 대기 안정도 지수 산출)

  • Park, Sung-Hee;Chung, Eui-Seok;Koenig, Marianne;Sohn, B.J.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.469-483
    • /
    • 2006
  • An algorithm was developed to estimate stability indices (SI) over the Korean peninsula using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) infrared brightness temperatures (TBs). The SI is defined as the stability of the atmosphere in the hydrostatic equilibrium with respect to the vertical displacements and is used as an index for the potential severe storm development. Using atmosphere temperature and moisture profiles from Regional Data Assimilation and Prediction System (RDAPS) as initial guess data for a nonlinear physical relaxation method, K index (KI), KO Index (KO), lifted index (LI), and maximum buoyancy (MB) were estimated. A fast radiative transfer model, RTTOV-7, is utilized for reducing the computational burden related to the physical relaxation method. The estimated TBs from the radiative transfer simulation are in good agreement with observed MODIS TBs. To test usefulness for the short-term forecast of severe storms, the algorithm is applied to the rapidly developed convective storms. Compared with the SIs from the RDAPS forecasts and NASA products, the MODIS SI obtained in this research predicts the instability better over the pre-convection areas. Thus, it is expected that the nowcasting and short-term forecast can be improved by utilizing the algorithms developed in this study.

A Study on Transient Operation Characteristics of 30kW Scale CVCF Inverter based Micro-grid (30kW급 CVCF 인버터 기반 Micro-grid의 구현 및 과도상태 운용특성에 관한 연구)

  • Lee, Hu-Dong;Choi, Sung-Sik;Ferreira, Marito;Park, Ji-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.18-25
    • /
    • 2019
  • Recently, micro-grids based on a CVCF inverter have been replacing diesel generators to reduce CO2 emissions in island areas with the increase of renewable energy sources. Stable operation methods are also being researched. These micro-grids may cause energy sinking if the total output of renewable energy sources is larger than the total customer loads. In the case of energy sinking, the voltage of a CVCF battery could rapidly increase according to the condition of SOC, and blackout could occur in the micro-grid due to the operation of a protection device in a CVCF inverter. Therefore, this paper analyzes the operation characteristics of a CVCF-inverter-based micro-grid when energy sinking occurs and proposes a transient operation strategy to prevent shut-down of the CVCF inverter. A test device of a 30-kW CVCF-inverter-based micro-grid was implemented, and the transient operation characteristics for the energy sinking phenomenon are presented. The simulation results confirm that blackout can be properly prevented according to the conditions of SOC and voltage in a CVCF battery.

Application of K-BASINRR developed for Continuous Rainfall Runoff Analysis to Yongdam Dam Test Bed (장기유출해석을 위하여 개발된 K-BASINRR의 용담댐 시험유역 적용)

  • Kim, Yeonsu;Jung, Ji Young;Noh, Joonwoo;Kim, Sung Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.211-211
    • /
    • 2017
  • 장기유출해석 모델은 수자원의 안정적인 확보와 이용, 유역단위 기초자료 조사관리 등을 위하여 수자원 장기종합계획 및 전국유역조사사업 등에 활용되고 있다. 주로 국외에서 개발된 모형이 활용되고 있어, 국내의 여건에 맞추어 편의성이 개선된 모형을 찾는 것은 매우 어려운 일이다. 또한, 유출해석을 수행하기에 앞서 지속적으로 업데이트된 모델에 대한 객관적인 평가를 수행한 사례는 드물다. 따라서, 본 연구에서는 국내에서 주로 활용되고 있는 장기유출해석모델(TANK, SWAT, SSARR, PRMS 등)에 대한 비교검토를 토대로 각종 사업과의 연계성, 계산의 효율성, 정확도 등을 고려하여 USGS에서 개발한 PRMS v.4.0.2를 기반으로 국내유역에 활용이 가능하도록 개선한 $K-BASIN^{RR}$ 및 입력자료 전처리기를 개발하였다. PRMS 모형은 융설 및 지하수 흐름 등 다양한 기능을 포함하여 강우유출 분석에 활용성 높은 모형으로 평가받고 있으나, 국내 OS환경 및 활용 단위계에서 활용성이 떨어지는 단점이 있다. 본 연구에서는 소스코드 개선 및 GUI구축을 통하여 PC 환경에서 구동이 쉽도록 재구성하였고, 사용자 편의성 확보를 위한 입력자료 전처리기를 개발함으로써 수자원단위지도 3.0, 임상도 재분류 테이블, 토양도 재분류 테이블의 DB화 및 모형의 구동을 위한 HRU분할, 입력자료 생성이 가능하도록 하였다. 매개변수 최적화를 위하여 하천 유량뿐만 아니라 기저유출량을 대상으로 Monte-Carlo 시뮬레이션 기반의 매개변수를 최적화 기능을 탑재하였다. 개발된 모형의 적용성 평가를 위하여 용담댐 시험유역을 대상으로 11년 간(2005-2015)의 강우 및 온도자료를 입력자료로 활용하여 모의한 결과 샘플의 개수에 따라 NSE(Nash-Sutcliffe Efficiency)를 0.9까지 추정이 가능함을 파악하였다. 또한, 유출량과 기저유출에 대하여 동시에 최적화를 수행하는 경우 NSE를 유출량에 대하여 0.8, 기저유출량에 대하여 0.6까지 추정이 가능하였다. 최적화된 모의 결과에 대한 검토를 위하여 계산증발산량을 측정증발산량과 비교한 결과, 유사한 패턴을 나타내는 것을 확인할 수 있었다. 본 연구에서 개발한 $K-BASIN^{RR}$을 활용하는 경우 장기유출해석 업무에 효율성 및 정확도를 향상할 수 있을 것으로 판단된다.

  • PDF

Design of Physical Layer and Performance Analysis for MX-S2X, Ship Centric Direct Communication with the Mitigation of Multi-path Fading on Sea Environment (해상 다중경로 페이딩 극복을 위한 선박중심 직접통신(MX-S2X) 물리계층 설계 및 성능 분석)

  • Ryu, Hyung-Jick;Yoo, Hae-Sun;Kim, Won-Yong;Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.352-359
    • /
    • 2021
  • This paper presents the definition and importance of ship-centric direct communication concerning ship safety of maritime autonomous and unmanned ships. It also proposes the concept of MX-S2X communication based on high frequency for wide-bandwidth technology and describes the design and simulation result for the physical layer of MX-S2X. It considered high-speed communication as well as overcoming maritime multi-path fading required to be resolved in the marine environment. The physical layer of MX-S2X communication was designed to overcome the occurrence of error-floor caused by multi-path fading even with receiving sufficient signal strength. To this purpose, a performance analysis was conducted on the physical layer by applying the channel model of the actual maritime communication environment. As a result of the performance analysis of the MX-S2X physical layer, it was confirmed that the BER error-floor observed in the VDE physical layer test was overcome, and it operated within the SNR 2dB degradation range compared to the AWGN channel. It is expected that this will show enough performance suitable for short-distance ship-centered direct communication and can be used for direct communication of maritime autonomous ships, unmanned ships, and group navigation of themshortly.

A Study on the Analysis of Monitoring Settlement Considering the History of the Groundwater Level in the Dredged Landfill Area Affected by Algae (조류의 영향을 받는 준설매립지역에서 지하수위 이력을 고려한 계측침하 분석에 관한 연구)

  • Jang, Ji-Gun;Son, Su-Won;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.13-23
    • /
    • 2021
  • If roads, bridges, buildings, etc. are built on the ground with soft clay or organic soil, there may be a lot of problems in geotechnical engineering such as settlement and stability due to the large settlement and lack of bearing capacity. In extreme cases, it may appear due to shear failure or collapse of the constructed structure, so a ground improvement method is indispensable to increase the strength of the ground and to suppress settlement. In this study, the settlement according to each groundwater level condition was analyzed using the measurement results for the groundwater level conditions, one of the important factors in predicting the settlement in dredged and reclaimed ground, and the groundwater level conditions applied to the settlement analysis were proposed by comparing it with settlement generated 5 years after construction. As a result of the analysis, it is judged that it is reasonable to apply the measured groundwater level during construction and the low water ordinary neap tide (L.W.O.N.T) during load application for the groundwater level in the settlement analysis. In addition, in the case of the dredged and reclaimed ground, it is estimated that the water pressure acting on the clay layer is nonlinear, as the result of the observations of the head of water at the observation points above and below the in-situ clay layer were different.

Comparision of Tidal Current Patterns at Keum River Estuary before and after Construction of Keum River Bank and Coastal Structures (금강하굿둑과 각종 해안구조물 설치 전, 후의 금강하구역 해수유동 양상 비교)

  • Jang, Chang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.601-610
    • /
    • 2021
  • The tidal current patterns at Keum River Estuary before and after the construction of coastal structures were compared according to the CASES. The depth-integrated and tidal difference treatment applied FLOW2DH numerical model was used for the tidal current predictions. The test conditions consisted of before construction of coastal structures (CASE1), after construction of coastal structures (CASE2), and the addition of watergate operation(CASE1Q and CASE2Q), and present (CASE3). CASE1 showed a stable tidal current pattern, such as a natural estuary. In CASE2, the tidal current velocities and directions of the Keum River Estuary were changed due to the installed coastal structures. In particular, the tidal current velocities of the Gaeya open channel sections (P5~P9) in CASE2 were calculated to be 10~30% larger than that of CASE1. In the case of the Gunsan Inner Harbor (P4), which is closest to the Geum River Estuary, the ebb flow rate was approximately 250~300% faster than that of other CASEs due to the discharge of the watergate operation for 2.7 hours during the ebb of CASE1Q and CASE2Q. This will affect sediment transport, and it is predicted to lead to seabed changes. CASE3 is considered to be entering the stabilization stage according to the simulation of the tidal current velocities and directions of the Keum River Estuary and the surrounding coastal area.

Experimental determination of design parameters for filtration trench using phosphorus removal granular materials (인 제거 입상소재를 적용한 여과수로 설계인자의 실험적 결정)

  • Jang, Yeoju;Lim, Hyunman;Jung, Jinhong;Ahn, Kwangho;Chang, Hyangyoun;Park, Nari;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • The algal blooms in stagnant streams and lakes have caused many problems. Excessive algae leads to disturbance of ecosystem and overload of water treatment processes. Therefore, phosphorus(P), source of algal blooms, should be controlled. In this study, a filtration trench has been developed to convert dissolved phosphorus into hydroxyapatite(HAP) so that it could be crystallized on the surface of 'phosphorus removal granular material'; and residual particulate phosphorus could be removed by additional precipitation and filtration. The front and rear parts of filtration trench consisted of 'phosphorus removal granular material contact bed' and 'limestone filtration bed', respectively. As a result of the column test using phosphorus removal granular material and limestone serially, $PO_4-P$ was removed more than 90% when EBCT(empty bed contact time) of the contact bed was over 20 minutes; and T-P represented 60% of removal efficiency when total EBCT was over 1.5 hours. The results of column tests to figure out the sedimentation characteristics showed that more than 90% of particulate phosphorus could be removed within 24 hours. It was necessary to optimize the filtration part in order to increase removal efficiency of T-P additionally. Also, it was confirmed through the simulation of Visual MINTEQ that most of particulate phosphorus in the column tests is the form of HAP. Based on the results of the study, it could be suggested that the design parameters are over 0.5 hour of EBCT for phosphorus removal granular material contact bed and over 1.5 hours of EBCT for limestone filtration bed.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.