• Title/Summary/Keyword: Simulation Test

Search Result 6,861, Processing Time 0.04 seconds

A Study on Fault Classification by EEMD Application of Gear Transmission Error (전달오차의 EEMD적용을 통한 기어 결함분류연구)

  • Park, Sungho;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • In this paper, classification of spall and crack faults of gear teeth is studied by applying the ensemble empirical mode decomposition(EEMD) for the gear transmission error(TE). Finite element models of the gears with the two faults are built, and TE is obtained by simulation of the gears under loaded contact. EEMD is applied to the residuals of the TE which are the difference between the normal and faulty signal. From the result, the difference of spall and crack faults are clearly identified by the intrinsic mode functions(IMF). A simple test bed is installed to illustrate the approach, which consists of motor, brake and a pair of spur gears. Two gears are employed to obtain the TE for the normal, spalled, and cracked gears, and the type of the faults are separated by the same EEMD application process. In order to quantify the results, crest factors are applied to each IMF. Characteristics of spall and crack are well represented by the crest factors of the first and the third IMF, which are used as the feature signals. The classification is carried out using the Bayes decision theory using the feature signals acquired through the experiments.

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.

Effect of Change in Hydrological Environment by Climate Change on River Water Quality in Nam River Watershed (기후변화에 따른 남강유역의 수문환경의 변화가 하천수질에 미치는 영향)

  • Kang, Ji Yoon;Kim, Young Do;Kang, Boo Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.873-884
    • /
    • 2013
  • In Korea, the rainfall is concentrated in summer under the influence of monsoon climate. Thus, even a small climate change can be significant problems in water resources. As a result, a lot of attention has been focused on climate changes and a number of researches have been conducted in a manner commensurate with the attention to the climate change. This study is intended to forecast the changes in the flow and water quality of the Nam river resulting from the future climate changes in the Nam river basin using a watershed and water quality model. An SWAT model, as a watershed hydrologic model, was established after estimating a climate scenario using an artificial neural network method, and the established model was verified and adjusted using date from the Ministry of Environment to evaluate the applicability of the model. As a consequence, $R^2$ showed more than 0.7 in the simulation test, which satisfies the minimum required level. Results from the SWAT model and the future Namgang dam discharge calculated by HEC-ResSIM is used as input date for QUALKO. The results showed a huge variation in BOD depending on the annual flow of the river, which recorded a maximum difference of 2 mg/L between a rainy season and a dry season. It can be deduced that because rainfall and the runoff of a basin significantly account for the water quality of a river, higher water concentrations are recorded in a dry season in which the flow is not as much as that in a rainy season. It also can be said that water should be reserved in advance to secure water in the Nam river downstream for a dry season and be controlled in an effective and efficient manner to provide better water quality.

Estimation of Soil Moisture and Irrigation Requirement of Upland using Soil Moisture Model applied WRF Meteorological Data (WRF 기상자료의 토양수분 모형 적용을 통한 밭 토양수분 및 필요수량 산정)

  • Hong, Min-Ki;Lee, Sang-Hyun;Choi, Jin-Yong;Lee, Sung-Hack;Lee, Seung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.173-183
    • /
    • 2015
  • The aim of this study was to develop a soil moisture simulation model equipped with meteorological data enhanced by WRF (Weather Research and Forecast) model, and this soil moisture model was applied for quantifying soil moisture content and irrigation requirement. The WRF model can provide grid based meteorological data at various resolutions. For applicability assessment, comparative analyses were conducted using WRF data and weather data obtained from weather station located close to test bed. Water balance of each upland grid was assessed for soils represented with four layers. The soil moisture contents simulated using the soil moisture model were compared with observed data to evaluate the capacity of the model qualitatively and quantitatively with performance statistics such as correlation coefficient (R), coefficient of determination (R2) and root mean squared error (RMSE). As a result, R is 0.76, $R^2$ is 0.58 and RMSE 5.45 mm in soil layer 1 and R 0.61, $R^2$ 0.37 and RMSE 6.73 mm in soil layer 2 and R 0.52, $R^2$ 0.27 and RMSE 8.64 mm in soil layer 3 and R 0.68, $R^2$ 0.45 and RMSE 5.29 mm in soil layer 4. The estimated soil moisture contents and irrigation requirements of each soil layer showed spatiotemporally varied distributions depending on weather and soil texture data incorporated. The estimated soil moisture contents using weather station data showed uniform distribution about all grids. However the estimated soil moisture contents from WRF data showed spatially varied distribution. Also, the estimated irrigation requirements applied WRF data showed spatial variabilities reflecting regional differences of weather conditions.

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel (캐비테이션 터널에서의 반류분포 재현에 미치는 유동조절체의 영향)

  • Jin-Tae Lee;Young-Gi Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • Flow control devices, such as flow liners, are frequently introduced hi a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section of a cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the after body of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary layer calculation should be incorporated in order to correlate the calculated wake distribution with tole measured one.

  • PDF

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

A Design of an AMI System Based on an Extended Home Network for the Smart Grid (스마트 그리드를 위한 확장 홈 네트워크 기반의 AMI 시스템 설계)

  • Hwang, Yu-Jin;Lee, Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.56-64
    • /
    • 2012
  • A smart grid is the next generation power grid which combines the existing power grid with information technology, so an energy efficient power grid can be provided. In this paper, in order to build an efficient smart grid an AMI system, which gears with the existing home network and provides an user friendly management function, is proposed. The proposed AMI system, which is based on an extended home network, consists of various functional units; smart meters, communication modules, home gateway, security modules, meter data management modules (MDMM), electric power application modules and so on. The proposed home network system, which can reduce electric power consumption and transmit data more effectively, is designed by using IEEE 802.15.4. The extended home gateway can exchange energy consumption information with the outside management system via web services. The proposed AMI system is designed to enable two-way communication between the home gateway and MDMM via the Internet. The AES(Advanced Encryption Standard) algorithm, which is a symmetric block cipher algorithm, is used to ensure secure information exchange. Even though the results in this study could be limited to our experimental environment, the result of the simulation test shows that the proposed system reduces electric power consumption by 4~42% on average compared to the case of using no control.

Competency Modeling Using AHP Methodology and Improvement of National Technical Qualification System (다면 AHP 방법론을 활용한 역량 모델링과 국가기술자격제도 개선 방안 도출)

  • Lee, Jae Yul;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.191-202
    • /
    • 2017
  • The purpose of this study is to develop an engineer competency model using Analytical Hierarchy Process (AHP) to improve the national technical qualification system. Korea has managed technical human resources at the government level through the operation of a national technical qualification system that certifies engineers with national certificates or technical grades by laws. However, there have been increasing concerns that the government system is separated from global standards and does not reflect an engineer's comprehensive capabilities. For these reasons, the new architecture of the system has been continuously discussed and becomes a major policy issue of the Korean government. For the development of the engineer competency model, domestic and global models were separately structured using 554 valid questionnaires with a consistency ratio (CR) of 0.1 or less. The relative importance of engineer competency factors in a domestic model was career (0.383), qualification (0.253), academic degree (0.195), and job training (0.169) whereas the order in the global model was career (0.308), global ability (0.237), job training (0.175), domestic qualification (0.147), and academic degree (0.134). The results of AHP analysis indicated that the evaluation factors and methods recognized by engineers were different from a current government model focusing on domestic qualifications. There was also perceptual difference in the importance of engineer evaluation factors between groups depending on the type of organizations and markets. This means that it is necessary to reflect the characteristics of organizations and markets when evaluating engineer competency. Based on AHP analysis and literature reviews, this paper discussed how to develop a new engineer competency index (ECI) and presented two effective index models verified by simulation test using 59,721 engineers' information. Lastly, the paper discussed major findings of our empirical research and proposed policy alternatives for the improvement of a national engineer qualification system. The paper contributes to the management of technical human resources since it provides quantitative competency models that are objectively developed by reflecting market recognition and can be effectively used by the policy makers or firms.