• Title/Summary/Keyword: Simulation Environment

Search Result 6,926, Processing Time 0.038 seconds

Automobile Cruise Control System Using PID Controller and Kalman Filter (PID 제어와 Kalman 필터를 이용한 자동차 정속주행 시스템)

  • Kim, Su Yeol;Kim, Pyung Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.8
    • /
    • pp.241-248
    • /
    • 2022
  • In this paper, the PID controller and Kalman filter are applied to improve the automobile cruise control in the environment with disturbance and noise, and the performance is verified through diverse simulation. First, a mathematical model for a automobile cruise control system is introduced. Second, the performance degradation due to disturbance in the basic open-loop control based cruise control system is shown and then PID controller-based feedback control system to resolve this problem is verified. Third, to improve the performance degradation due to sensor noise that may occur during the feedback process, a Kalman filter is applied and verified. Ultimately, it is verified that the designed cruise control system with PID controller and Kalman filter not only satisfies all performance conditions but also has the ability for disturbance rejection and noise reduction.

Study on TRX Channel Amplitude and Phase Calibration Method for a Radar Wind Profiler Based on 256 Active Phased Array (256 능동위상배열 기반 연직바람 관측장비의 송수신 채널 크기 및 위상 보정 방법 연구)

  • Jung, Woo-Jae;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.162-170
    • /
    • 2022
  • In this paper, the phased-array transceiver (TRX) channel amplitude and phase calibration method for a radar wind profiler (RWP) based on the 256 active phased array is discussed. Without the additional module, the TX and RX calibration paths were secured using couplers and switches in the TRX front ends and the TRX switching duplexers, and the amplitude and phase of the 256 TRX were calibrated using a gain and phase detector. The beam widths and side lobes of five beams (vertical, east, west, south, and north) of the calibrated 256 active phased array antenna were confirmed by a near-field which agreed well with the simulation results. The proposed calibration method can be easily applied to a system based on an active phased array operated in an outdoor environment.

On the Analysis of Physical Distribution System in Mokpo Port (목포항 물류시스템의 분석에 관한 연구)

  • Lee, C. Y.;Nam, M. U.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • Rapid change in the technological environment of marine transportation and the development of the ocean shipping industry have fostered a revolution in the port system. This in turn has caused major changes in the function and use of port in Korea. Aside from this, Mokpo Port, however continues to decline, because the existing port facilities and related subsystem are already obsolete with no chance of regaining operational effectiveness and treatment for proper implementation. Although a few studies have been done on the Mokpo Port, has not been found, any reseach for the analytical approach to the transportation system of it. This paper aims to make an extensive analysis of the physical distribution system in Mokpo Port focusing on the coordination of subsystems such as navigational aids system. The base of introduced simulation tool here is the queueing theory. The overall findings are as follows: 1. Among those vessels called at Mokpo Port in 1994, 556 ships(2,736,669 G/T) are oceangoing while 8155 ships(2,587,217 G/T) are domestic. The average size of oceangoing vessels is 4,922,1 G/T, and the domestic is 317,8 G/T. The average arrival interval and service time of the domestic vessels are 6.0 hours and 24.1 hours respectively marking the berth occupation rate over 100%. Those for oceangoing vessels are 34.5 hours, 120.0 hours and 37.2%. In order to maintainin the berth occupation rate to 70% the capacity considering the 1994 of domestic piers must be extended to 145% and oceangoing vessels must be increased to 165%. 2. The capacity of approaching channel is enough to handle the total traffic volume of 3. Tugs are sufficiently being provided to handle all ships requiring their services 4. The capacity of storage and inland transportation systems are sufficient to handle the throughput and the yard stroage utilization rate of No.1 - No.5 is 4.5% and No.6 is 30% of 1993's. 5. The utilization rate of LLC(Level Looping Crane) and PNT(PNeumaTic) are 2.7% and 18.8%, respectively.

  • PDF

A Fundamental Study on Structure Health Monitoring System Based on Energy Harvesting of Harbour Structure (자가발전기반 항만 구조물 건전성 모니터링 시스템에 대한 기초연구)

  • Jong-Hwa Yi;Seung-Hyeon Lee;Young-seok Kim;Chul Park
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.847-860
    • /
    • 2022
  • Purpose: The purpose of this paper is to present a basic study on the development of a self-generation infrastructure for monitoring the health of harbour structures. Method: By developing a self-generation system and fiber optic sensors for seawater, the study provides basic research data on port structure health monitoring. Result: Through sunlight simulation analysis, 4-5 hours of sunlight can be secure in the domestic environment. Through this, the optical splitter (Introgate) that collects the raw data from the FBG sensor applicable to seawater, the MCU that calculates it, the IoT module with wireless communication functionality, the monitoring server and the supply system are set up. Conclusion: Monitoring port structures directly with fiber optic probes (FBG) and the possibility of using selfpowered systems were confirmed.

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

Analysis of estuary reservoir water environment under future environmental changes (미래 환경 변화에 따른 하구담수호 물환경 분석)

  • Hyunji Lee;Seokhyeon Kim;Sinae Kim;Jihye Kim;Jihye Kwak;Moon Seong Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.461-461
    • /
    • 2023
  • 하구담수호는 하구에 방조제를 축조하여 인공적으로 조성된 저수지로 배수갑문을 통해 적정수위를 유지하고 담수된 물은 농업용수, 공업 및 생활용수로 활용되고 있다. 최근 담수호 수질을 살펴보면 호소수 수질환경기준 IV등급을 상회하여 농업용수로 부적합한 것으로 나타났다. 하구담수호 수질은 간척농지와 담수호 유역내 농경지, 축사 등에서 배출되는 영양염류, 유사 등에 의해 오염되며, 이들은 경지의 경사, 토양, 강우 특성 등과 같이 다양한 인자들에 의하여 영향을 받는다. 도시화와 기후변화 등으로 인해 변화하는 환경에서 지속가능한 수자원 관리를 위해 하구담수호 물환경의 변화를 분석할 필요가 있다. 따라서 본 연구에서는 간월호 유역을 대상으로 유역-호소 연계 모형을 이용하여 미래 기상, 토지이용, 용수수요량 등의 변화에 따른 담수호 물환경을 분석하였다. SSP(Shared Socioeconomic Pathways) 기후변화 시나리오를 활용하여 미래 기상을 적용하였으며 Markov Chain기법 및 FLUS (Future Land-Use Simulation model)모형을 통해 미래 토지이용을 구축하였다. 미래 환경 변화를 적용하여 HSPF-EFDC-WASP 모형을 구동하여 담수호의 수문, 수질 분석을 수행하였다. 이 연구의 결과는 미래의 환경 변화에 대응하기 위해 하구담수호를 관리하기 위한 효과적인 전략을 개발하는 데 활용될 것으로 사료된다.

  • PDF

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

Performance Analysis of Low Earth Orbit Satellite Communication Systems Under Multi-path Fading Environments (다중경로 페이딩 환경하에서의 저궤도 위성통신시스템 성능 분석)

  • Hae-uk Lee;Young-bin Ryu;Hyuk-jun Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.410-416
    • /
    • 2023
  • Unlike geostationary satellite communication systems, low-earth orbit(LEO) satellite communication systems move at relatively high speeds, and the angle with the ground device is not fixed and varies over a wide range. The propagation channel condition between satellites and ground nodes cannot be assumed line of sight(LOS) anymore. This paper analyzes the low-orbit multi-path fading satellite channel model that can occur in LEO satellite communication systems and Doppler frequency transition caused by high-speed maneuvering of LEO satellites and presents effective equalization techniques for OFDM and SC-FDE transmission methods suitable for multi-path frequency selective fading satellite channel models. In addition, this paper compares and analyzes the performance of OFDM and SC-FDE transmission methods in multipath fading LEO satellite channel environment using the proposed equalization techniques through simulations. Simulation results showed that SC-FDE outpeformed OFDM.

Reduced Raytracing Approach for Handling Sound Map with Multiple Sound Sources, Wind Advection and Temperature

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.55-62
    • /
    • 2023
  • In this paper, we present a method that utilizes geometry-based sound generation techniques to efficiently handle multiple sound sources, wind turbulence, and temperature-dependent interactions. Recently, a method based on reduced raytracing has been proposed to update the sound position and efficiently calculate sound propagation and diffraction without recursive reflection/refraction of many rays, but this approach only considers the propagation characteristics of sound and does not consider the interaction of multiple sound sources, wind currents, and temperature. These limitations make it difficult to create sound scenes in a variety of virtual environments because they only generate static sounds. In this paper, we propose a method for efficiently constructing a sound map in a situation where multiple sounds are placed, and a method for efficiently controlling the movement of an agent through it. In addition, we propose a method for controlling sound propagation by considering wind currents and temperature. The method proposed in this paper can be utilized in various fields such as metaverse environment design and crowd simulation, as well as games that can improve content immersion based on sound.

Energy Saving Effects of Green Roof in Exiting Buildings according to Different Insulation Levels (기존 노후 건물의 단열 성능에 따른 옥상 녹화 시스템 설치시 에너지 성능 변화)

  • An, Kyeong A;Han, Seung Won;Moon, Hyeun Jun
    • Journal of Korean Living Environment System
    • /
    • v.21 no.6
    • /
    • pp.959-964
    • /
    • 2014
  • Energy performance of building envelope components, including external walls, floors, roofs, windows and doors, is crutial for determining how much energy is required for heating and cooling in a building. Among various building technologies, a green roof system can be a good option for reducing heat gain and loss in new buildings as well as existing buildings for green remodeling. This paper evaluates the performance of green roof systems according to soil depth and Leaf Area Index (LAI) for existing buildings. It also attempts to quantify the energy saving effects on new and existing buildings with different insulation levels. Thermal performance of green roofs is mainly dependent on soil thickness and LAI. Installation of green roofs in deteriorated existing buildings can lead to improvements in roof insulation, due to the soil layer. An increase in soil depth leads to a decrease in heating load, regardless of conditions of vegetation on the green roof. Larger LAI values may reduce cooling loads in the cooling season. Installation of green roof in deteriorated existing buildings showed bigger energy saving effect in comparison to a case in new buildings. A simulation study showed that the installation of green roof systems in deteriorated existing buildings with low insulation levels, due to low thermal performance requirements when constructed, could improve the energy performance of the buildings similar or better to the peformance on new buildings with the most updated insulation standard. Thus, when remodeling a deteriorated building, green roofs could be a good option to meet the most recent energy requirements.