• Title/Summary/Keyword: Simulation Based

Search Result 25,545, Processing Time 0.048 seconds

Constructivistic Learning Method with Simulation to Increase Classroom Engagement

  • Yuniawan, Dani;Ito, Teruaki
    • Journal of Engineering Education Research
    • /
    • v.15 no.5
    • /
    • pp.54-59
    • /
    • 2012
  • It is reported that the constructivistic learning method (CLM) enhances the understanding of the students in the learning process, especially in engineering classes. In CLM-based classes, the students can take the initiative in the learning process, which is called the student-centered model of the learning process. This is different from the traditional learning method based on the teacher-centered model, where a teacher plays the central role in the learning process of students. The authors have applied the method of CLM to one of the Engineering classes, namely production planning and inventory control (PPIC) class for undergraduate students. The PPIC class provides multimedia-based study materials and factory visits as well as regular lecture sections to cover the whole subject of inventory control theory and practice. In the review sessions, students are divided into several groups, and question-and-answer discussions were actively carried out among these groups under the support of the teacher as a facilitator. It was observed that the student engagement in the class was very active compared to the conventional lecture-based classes. As for further support of students understanding on the subject, simulation-based materials are also under study for the class. This paper presents the review of case study of CLM-based PPIC class and discusses the feasibility of simulation-based study materials for further improvement of the class.

A Simulation Model for Master Production Schedule (MPS) Evaluation System (기준생산계획 평가 시스템을 위한 시뮬레이션 모델)

  • 최성훈
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.106-110
    • /
    • 1998
  • Some successful scheduling systems are based on simulation technique. However, they are relatively expensive. A cost-effective solution is to apply general-purpose simulation software to the scheduling system. This paper is concerned with developing a simulation model for MPS(Master Production Schedule) evaluation system. The target system of the model is PC production system. AIM (Analyzer for Improving Manufacturing system), a well-known manufacturing oriented simulation software, is used for modeling tool. Eventually, the model can be included into an MPS evaluation system as simulation module and a scheduler can use the system to verify the MPS in advance.

  • PDF

Analysis of Physical Distribution System in Harbour by Simulation (선박입출항 시뮬레이션을 통한 항만 물류시스템의 분석)

  • 임재민
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.21-24
    • /
    • 1998
  • Simulation modeling has become an extremely important approach to analyzing complex system. In recent years the number of people using simulation as problem-solving aid has increased. In this Paper, we developed a simulation model for analyzing the physical distribution system in ports. We used Arena 2.2 which is a kind of simulation software based common simulation language, SIMAN V. And then, we applied this model to kwangyang port(partially) and analyzed the effect of it upon port system in according to change of the quantity of goods transported.

  • PDF

Extending the DEVS formalism toward Geometrical Kinematic Modeling and Simulation for Virtual Manufacturing Environment (가상제조환경을 위한 형상기구학 모델링 및 시뮬레이션으로의 DEVS 확장)

  • 황문호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.24-29
    • /
    • 1999
  • Proposed in this paper is a modeling and simulation methodology for a virtual manufacturing environment. Based on DEVS formalism[Zeigler 76], the proposed model, so called GKDEVS, is designed to descript the geometrical knematic structure as well as event-driven and continuous state dynamics. In terms of abstract simulation algorithm[Zeigler 84], the simulation method of GKDEVS is proposed for combined discrete-continuous simulation. Using the GKDEVS, and FMS model consisting of a turing machine, a 3-axis machine and a RGV-mounted robot is constructed and simulated.

  • PDF

A Statistical Estimation of The Universal Constants Using A Simulation Predictor

  • Park, Jeong-Soo-
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.6-6
    • /
    • 1992
  • This work deals with nonlinear least squares method for estimating unknown universial constants C in a computer simulation code real experimental data(or database) and computer simulation data. The best linear unbiased predictor based on a spatial statistical model is fitted from the computer simulation data. Then nonlinear least squares estimation method is applied to the real data using the fitted prediction model(or simulation predictor) as if it were the true simulation model. An application to the computational nuclear fusion device is presented.

  • PDF

The Effect of Education based on Simulation with Problem-based Learning on Nursing Students' Learning Motivation, Learning Strategy, and Academic Achievement (문제중심학습 연계 시뮬레이션 기반 교육이 간호대학생의 학습동기, 학습전략 및 학업성취도에 미치는 효과)

  • Cho, Ok-Hee;Hwang, Kyung-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.640-650
    • /
    • 2016
  • This study was conducted in order to develop an education program based on simulation with problem-based learning, to apply it to nursing students, and to examine its effects on the students' learning motivation, learning strategy, and academic achievement. The subjects of this study were 69 seniors majoring in nursing. Education based on simulation with problem-based learning was applied to the students from September to October in 2015, and then a questionnaire survey was conducted on their learning motivation, learning strategy, and academic achievement. According to the results of this study, the education based on simulation with problem-based learning reduced the nursing students' other-directed motivation (external motivation), increased their self-regulation motivation (identified motivation, intrinsic motivation), and improved their use of resource management strategies. In addition, academic achievement (academic performance, and educational satisfaction) was in a positive correlation with identified motivation and learning strategies (cognitive strategy, meta cognitive strategy, and resource management strategy). In conclusion, education based on simulation with problem-based learning was found to be an effective education strategy for enhancing nursing students' autonomous motivation and improving their use of resource management strategies. Thus, it is necessary to promote the application of simulation with problem-based learning in various care situations and to study factors and parameters influencing learning related variables.

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

A simulation for the analysis of the evasive capability of submarine against a torpedo using DEVS modeling (DEVS 기반 모델링을 적용한 잠수함의 어뢰회피 성능 분석 시뮬레이션)

  • Kang Jung-Ho;Lee Sung-Jun;Cha Ju-Hwan;Yoo Seong-Jin;Lee Hyo-Kwang;Lee Kyu-Yeul;Kim Tae-Wan;Ko Yong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.57-71
    • /
    • 2005
  • A simulation for the analysis of the evasive capability of a conventional costal submarine against a light Anti-Submarine Warfare (ASW) torpedo has been studied. The Torpedo, Submarine Controller, Devoy, and Jammer models of this simulation are analysised and designed using Unified Modeling Language (UML) and in addition they are modeled Discrete Event System Specification (DEVS). We examine maximum speed, acceleration, countermeasure systems capabilities of a submarine, and sonar range of a torpedo as the factors which affect the evasive capability of the submarine. This paper shows the relationships between those various factors and the submarine's evasive capability as the outcome of the simulation. The simulation models can be applied for simulation based acquisition (SBA) of a submarine system.

  • PDF

Real Weather Condition Based Simulation of Stand-Alone Wind Power Generation Systems Using RTDS

  • Park, Min-Won;Han, Sang-Geun;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.146-152
    • /
    • 2004
  • Cost effective simulation schemes for Wind Power Generation Systems (WPGS) considering wind turbine types, generators and load capacities have been strongly investigated by researchers. As an alternative, a true weather condition based simulation method using a real-time digital simulator (RTDS) is experimented in this paper for the online real-time simulation of the WPGS. A stand-alone WPGS is, especially, simulated using the Simulation method for WPGS using Real Weather conditions (SWRW) in this work. The characteristic equation of a wind turbine is implemented in the RTDS and a RTDS model component that can be used to represent any type of wind turbine in the simulations is also established. The actual data related to weather conditions are interfaced directly to the RTDS for the purpose of online real-time simulation of the stand-alone WPGS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme. The results also signify that the cost effective verification of efficiency and stability for the WPGS is possible by the proposed real-time simulation method.