• Title/Summary/Keyword: Simulation Analyses

Search Result 1,283, Processing Time 0.027 seconds

Application of Multi-Agent Transport Simulation for Urban Road Network Operation in Incident Case (유고상황 시 MatSIM을 활용한 도시부 도로네트워크 운영 분석)

  • Kim, Joo-Young;Yu, Yeon-Seung;Lee, Seung-Jae;Hu, Hye-Jung;Sung, Jung-Gon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.163-173
    • /
    • 2012
  • PURPOSES : The purpose of this study is to check the possibilities of traffic pattern analysis using MatSIM for urban road network operation in incident case. METHODS : One of the stochastic dynamic models is MatSIM. MatSIM is a transportation simulation tool based on stochastic dynamic model and activity based model. It is an open source software developed by IVT, ETH zurich, Switzerland. In MatSIM, various scenario comparison analyses are possible and analyses results are expressed using the visualizer which shows individual vehicle movements and traffic patterns. In this study, trip distribution in 24-hour, traffic volume, and travel speed using MatSIM are similar to those of measured values. Therefore, results of MatSIM are reasonable comparing with measured values. Traffic patterns are changed according to incident from change of individual behavior. RESULTS : The simulation results and the actual measured values are similar. The simulation results show reasonable ranges which can be used for traffic pattern analysis. CONCLUSIONS : The change of traffic pattern including trip distribution, traffic volumes and speeds according to various incident scenarios can be used for traffic control policy decision to provide effective operation of urban road network.

Stage Separation Analysis of Launch Vehicle Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 발사체 단 분리 운동 분석)

  • Oh, Choong-Seok;Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.341-348
    • /
    • 2015
  • This paper addresses Monte-Carlo simulation analyses for the stage separation of the general launch vehicle. The stage separation event of the launch vehicle occurs during a very short time and is related with many dynamic parameters. The stage separation is a critical event in that the launch fails if there is a collision during the stage separation. The stage separation analyses was conducted for the general launch vehicle to confirm the separation without collision within the designed clearance in case of the random input parameters. This paper presents the stochastic results of the stage separation of the launch vehicle using the Monte-Carlo simulation.

RELAP5 Simulation of the Small Inlet Header Break Test B8604 Conducted in the RD-14 Test Facility

  • Lee, Sukho;Kim, Manwoong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The RELAP5 code has been developed for best-estimate simulation of transients and accidents for pressurized water reactors and their associated systems, but it has not been fully assessed for those of CANDU reactors. However, a previous study suggested that the RELAP5 code could be applicable to simulate the transients and accidents for CANDU reactors. Nevertheless, it is indicated that there are some works to be resolved, such as modeling of headers and multi-channel simulation for the reactor core, etc. Therefore, this study has been initiated with an aim to identify the code applicability for all the postulated transients and accidents in CANDU reactors. In the present study, the small inlet header break experiment (B8604) in the RD-14 test facility was simulated with RELAP5/MOD3.2 code. The RELAP5 results were also compared with both experimental data and those of CATHENA analyses performed by AECL and the analyses demonstrated the code's capability to predict major . phenomena occurring in the transient with sufficient accuracy for both Qualitative and quantitative viewpoint However, some discrepancies in the depressurization of the primary heat transport system after the break and the consequent time delay of the major phenomena were also observed.

  • PDF

Impact of Maintenance Outage Rate Modeling on the Minimum Reserve Rate in Long-term Generation Expansion Planning (예방정비율(MOR) 모델링 방식이 수급계획의 최소설비예비율 산정에 미치는 영향)

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1712-1720
    • /
    • 2017
  • In South Korea, minimum reserve rate, which is to satisfy reliability standard, has been determined by simulation result using WASP. But, it is still controversial whether the level of minimum reserve rate is adequate. Thus, in this study, various analyses of minimum reserve rate are being conducted. WASP uses the probabilistic simulation technique to evaluate whether reliability standard is satisfied. In this process, forced outage rate and maintenance periods of each generator play important roles. Especially, the long-term plan can be varied depending on how maintenance periods deal with. In order to model maintenance periods in the probabilistic simulation technique, WASP uses derating method. However, broad analyses have to be conducted because there are various ways including derating method to model maintenance periods which result in different results. Therefore, in this paper, 3 different maintenance outage rate modeling methods are applied to arbitrarily modeled system based on the basic plan for long-term electricity supply and demand of South Korea. Results show impact of each modeling method on minimum reserve rate.

A study on the modelling and simulation of robotic assembly cells (로보틱 조립셀의 모델링 및 시뮬레이션에 관한 연구)

  • 홍지민;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.411-416
    • /
    • 1990
  • A modelling process of a robotic assembly cell and a method for analysis of the assembly cell operation through simulation are presented. An assembly cell including industrial robots is the subject of the model. The states of the assembly cell elements are taken as the state variables and the relationships between the states are described mathematically using the operators. An algorithm for the cell operation is developed from the relationships between the states and the information on the assembly task, and efficient analyses are performed by the simulation results.

  • PDF

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

A Radar Performance Model for Mission Analyses of Missile Models (유도무기 임무 분석을 위한 레이더 성능 모델)

  • Kim, Jingyu;Woo, S.H. Arman
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.822-834
    • /
    • 2017
  • In M&S, radar model is a software module to identify position data of simulation objects. In this paper, we propose a radar performance model for simulations of air defenses. The previous radar simulations are complicated and difficult to model and implement since radar systems in real world themselves require a lot of considerations and computation time. Moreover, the previous radar simulations completely depended on radar equations in academic fields; therefore, there are differences between data from radar equations and data from real world in mission level analyses. In order to solve these problems, we firstly define functionality of radar systems for air defense. Then, we design and implement the radar performance model that is a simple model and deals with being independent from the radar equations in engineering levels of M&S. With our radar performance model, we focus on analyses of missions in our missile model and being operated in measured data in real world in order to make sure of reliability of our mission analysis as much as it is possible. In this paper, we have conducted case studies, and we identified the practicality of our radar performance model.