• Title/Summary/Keyword: Simulation Analyses

Search Result 1,283, Processing Time 0.029 seconds

Performance analyses of naval ships based on engineering level of simulation at the initial design stage

  • Jeong, Dong-Hoon;Roh, Myung-Il;Ham, Seung-Ho;Lee, Chan-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.446-459
    • /
    • 2017
  • Naval ships are assigned many and varied missions. Their performance is critical for mission success, and depends on the specifications of the components. This is why performance analyses of naval ships are required at the initial design stage. Since the design and construction of naval ships take a very long time and incurs a huge cost, Modeling and Simulation (M & S) is an effective method for performance analyses. Thus in this study, a simulation core is proposed to analyze the performance of naval ships considering their specifications. This simulation core can perform the engineering level of simulations, considering the mathematical models for naval ships, such as maneuvering equations and passive sonar equations. Also, the simulation models of the simulation core follow Discrete EVent system Specification (DEVS) and Discrete Time System Specification (DTSS) formalisms, so that simulations can progress over discrete events and discrete times. In addition, applying DEVS and DTSS formalisms makes the structure of simulation models flexible and reusable. To verify the applicability of this simulation core, such a simulation core was applied to simulations for the performance analyses of a submarine in an Anti-SUrface Warfare (ASUW) mission. These simulations were composed of two scenarios. The first scenario of submarine diving carried out maneuvering performance analysis by analyzing the pitch angle variation and depth variation of the submarine over time. The second scenario of submarine detection carried out detection performance analysis by analyzing how well the sonar of the submarine resolves adjacent targets. The results of these simulations ensure that the simulation core of this study could be applied to the performance analyses of naval ships considering their specifications.

SENSITIVITY ANALYSIS ABOUT THE METHODS OF UTILIZING THE HIGH RESOLUTION CLIMATE MODEL SIMULATION FOR KOREAN WATER RESOURCES PLANNING (II) : NUMERICAL EXPERIMENTS

  • Jeong, Chang-Sam;Hwang, Man-Ha;Ko, Ick-Hwan;Heo, Jun-Haeng;Bae, Deg-Hyo
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.73-89
    • /
    • 2005
  • Two kinds of high resolution GCMs with the same spatial resolutions but with different schemes run by domestic and foreign agencies are used to clarify the usefulness and sensitivity of GCM for water resources applications for Korea. One is AMIP-II (Atmospheric Model Intercomparison Project-II) type GCM simulation results done by ECMWF (European Centre for Medium-Range Weather Forecasts) and the other one is AMIP-I type GCM simulation results done by METRI (Korean Meteorological Research Institute). Observed mean areal precipitation, temperature, and discharge values on 7 major river basins were used for target variables. Monte Carlo simulation was used to establish the significance of the estimator values. Sensitivity analyses were done in accordance with the proposed ways. Through the various tests, discrimination condition is sensitive for the distribution of the data. Window size is sensitive for the data variation and the area of the basins. Discrimination abilities of each nodal value affects on the correct association. In addition to theses sensitivity analyses results, we also noticed some characteristics of each GCM. For Korean water resources, monthly and small window setting analyses are recommended using GCMs.

  • PDF

Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars

  • Cardone, D.;Perrone, G.;Sofia, S.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.41-62
    • /
    • 2013
  • A comprehensive experimental program of cyclic tests on 1:3-scale models of bridge piers is going to be carried out at the Laboratory of Structures and Materials of the University of Basilicata. The testing models include eight RC single shaft piers with hollow circular cross section. Four piers have been realised using corroded steel rebars. In this paper, the results of preliminary numerical simulation analyses of the cyclic behaviour of the piers, carried out with Opensees using fiber-based models, are presented. Pull-out and lap-splice effects of steel rebars have been taken into account in the numerical analyses. First, the experimental specimens and the test set up are presented. Next, the results of the numerical analyses are discussed. In the numerical analyses, different configurations and levels of corrosion have been considered. The effective stiffness and equivalent damping of the piers is reported as a function of pier ductility and pier drift.

Electrical fire simulation in control room of an AGN reactor

  • Jyung, Jae-Min;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.466-473
    • /
    • 2021
  • Fire protection is one of important issues to ensure safety and reduce risks of nuclear power plants (NPPs). While robust programs to shut down commercial reactors in any fires have been successfully maintained, the concept and associated regulatory requirements are constantly changing or strengthening by lessons learned from operating experiences and information all over the world. As part of this context, it is necessary not only to establish specific fire hazard assessment methods reflecting the characteristics of research reactors and educational reactors but also to make decisions based on advancement encompassing numerical analyses and experiments. The objectives of this study are to address fire simulation in the control room of an educational reactor and to discuss integrity of digital console in charge of main operation as well as analysis results through comparison. Three electrical fire scenarios were postulated and twenty-four thermal analyses were carried out taking into account two turbulence models, two cable materials and two ventilation conditions. Twelve supplementary thermal analyses and six subsequent structural analyses were also conducted for further examination on the temperature and heat flux of cable and von Mises stress of digital console, respectively. As consequences, effects of each parameter were quantified in detail and future applicability was briefly discussed. On the whole, higher profiles were obtained when Deardorff turbulence model was employed or polyvinyl chloride material and larger ventilation condition were considered. All the maximum values considered in this study met the allowable criteria so that safety action seems available by sustained integrity of the cable linked to digital console within operators' reaction time of 300 s.

A Study on the Production of the Back Beam for a Automotive Bumper by Roll Forming Process (롤 성형 공정에 의한 자동차용 범퍼빔 제조에 관한 연구)

  • 정동원;이문용;김광희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.163-170
    • /
    • 2003
  • The back beam for a automotive bumper was roll formed to improve performance, reduce weight and save cost. For the back beams produced by conventional stamping and roll forming, the crashworthiness analyses were carried out by numerical simulation and real impact test. The characteristic properties and applicability of the roll formed back beam are discussed from the results of the analyses.

Nonlinear Dynamic Simulation using SIMULINK (SIMULINK를 이용한 비선형 동적 해석)

  • Kim Seong Keol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.105-112
    • /
    • 2005
  • Analyses of dynamic models which were one and two degrees of freedom, and had the nonlinear springs and dampings with certain polynomial functions were performed from SIMULINK in MATLAB. Those consisted of 12 programs and were built on the basis of the preceding programs fur the linear dynamic simulations. However the programs for the nonlinear simulations were quite different from those f3r the linear ones, and showed the results of the analyses in real time with animating. It was found that the programs would help us to solve any kind of nonlinear dynamic simulation with one and two degrees of freedom. Especially, the simulations for 1 DOF system with cubic nonlinear spring farce showed the results for Duffing's equation, of which phenomena were jump-up and jump-down. It will be applied to the dynamic simulation of the car seat vibration with a passenger, of which model has the equivalent nonlinear springs and is two degrees of freedom.

Development of a Dynamic Simulation Program for Pantograph-Catenary System based on a Mode Superposition Method (모드중첩법을 기초로 한 집전성능해석 프로그램 개발)

  • 조용현;이기원;현승호;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.606-617
    • /
    • 2000
  • A dynamic simulation program for pantograph-catenary system is developed based on a mode superposition method to predict current collection performance. Formulations for the dynamic simulation are presented in this paper. The number of modes which should be considered for a KTX catenary system is reviewed through frequency response analyses. The responses for GPU pantograph - KTX catenary system are simulated with various train speeds. The our simulation results are in reasonably good agreements with RTRI simulation program, SNCF simulation program, and BR simulation program.

  • PDF

Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan

  • Shimadera, Hikari;Hayami, Hiroshi;Chatani, Satoru;Morikawa, Tazuko;Morino, Yu;Mori, Yasuaki;Yamaji, Kazuyo;Nakatsuka, Seiji;Ohara, Toshimasa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.139-152
    • /
    • 2018
  • The urban model inter-comparison study (UMICS) was conducted in order to improve the performance of air quality models (AQMs) for simulating fine particulate matter ($PM_{2.5}$) in the Greater Tokyo Area of Japan. UMICS consists of three phases: the first phase focusing on elemental carbon (UMICS1), the second phase focusing on sulfate, nitrate and ammonium (UMICS2), and the third phase focusing on organic aerosol (OA) (UMICS 3). In UMICS2/3, all the participating AQMs were the Community Multiscale Air Quality modeling system (CMAQ) with different configurations, and they similarly overestimated $PM_{2.5}$ nitrate concentration and underestimated $PM_{2.5}$ OA concentration. Various sensitivity analyses on CMAQ configurations, emissions and boundary concentrations, and meteorological fields were conducted in order to seek pathways for improvement of $PM_{2.5}$ simulation. The sensitivity analyses revealed that $PM_{2.5}$ nitrate concentration was highly sensitive to emissions of ammonia ($NH_3$) and dry deposition of nitric acid ($HNO_3$) and $NH_3$, and $PM_{2.5}$ OA concentration was highly sensitive to emissions of condensable organic compounds (COC). It was found that $PM_{2.5}$ simulation was substantially improved by using modified monthly profile of $NH_3$ emissions, larger dry deposition velocities of $HNO_3$ and $NH_3$, and additionally estimated COC emissions. Moreover, variability in $PM_{2.5}$ simulation was estimated from the results of all the sensitivity analyses. The variabilities on CMAQ configurations, chemical inputs (emissions and boundary concentrations), and meteorological fields were 6.1-6.5, 9.7-10.9, and 10.3-12.3%, respectively.

A Study on the Effective Health Examination Center Distribution and Space Coordination using Agent based Model (행위자 기반 모형을 활용한 효율적 검진센터 서비스배분 및 공간조정에 관한 연구)

  • Kim, Suktae;Hong, Sachul
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2018
  • Purpose: The important things in space plan of a screening center are improving the spatial awareness by space systemization and minimizing the examination time for customers, and reducing the required time of screening work and maximizing the capacity for the screening center. Therefore, we tried to solve the problem of improving spatial awareness and reducing the examination time by using the pedestrian based discrete event simulation at the minimum cost. Methods: We have analyzed the drawbacks and the supplement points by comparing the floor plan at the time of opening and the current floor plan. Based on the analysis, we propose an improved plan which changes the location of the examination rooms and the number of services, and we also verify the improved plan based on simulation analyses. Results: 1) Through the analyses, we derived the drawbacks of the floor plan at the time of opening, and we realized that the current floor plan reflects the drawbacks. 2) The major reasons of the long examination time are the human traffic jam and the occurrence of queues due to unreasonable allocation of services. 3) Through the discrete event simulation analyses, it was possible to specify the place of the queues manually so as to use the given space fairly. 4) Using the discrete event simulation, it was possible to reduce the examination time and to improve the spatial awareness effectively at the minimum cost. Implications: Although the proposed simulation methodology in this paper is an analysis of the existing screening center, we expect that the proposed methodology will be used to develop a more efficient architectural design process by pre-applying the method to the course of designing a screening center and finding the suitability of the proposed method with the matched number of services.

Analysis of the Overvoltages during Energizing Transmission Lines using EMTP (EMTP를 이용한 시송전 계통의 송전선로 초기 가압시 과전압 분석에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Young-Sik;Joo, Haeng-Ro;Cho, Burm-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.873-878
    • /
    • 2009
  • When the transmission lines are initially energized for power system restoration, the power system suffers the various overvoltages that can be classified as steady-state, transient, and dynamic overvoltages. For the accurate analyses of these overvoltages, many researchers utilize different simulation tools such as Power System Simulator for Engineering(PSS/E). Although PSS/E provides good solutions in steady-state and dynamic overvoltages, it is not suitable for transient overvoltages. Therefore, transient overvoltages are simulated by using Electro-Magnetic Transients Program(EMTP) developed for the analysis of transients in the power system. Recently, EMTP can be also used to simulate dynamic behavior of the system. In order to analyze the transient overvoltages with steady-state and dynamic overvoltages, the authors adopt EMTP as the simulation tool for the analysis of overvoltages. This paper presents the simulation results for the analyses of various overvoltages, and the possibility of EMTP to be used for these types of analyses.