• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.031 seconds

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

Study of Ride Comfort on Train through Physiological Parameter (생체 신호를 이용한 열차 승차감 평가 시스템 연구)

  • Song, Yong-Soo;Oh, Suk-Moon;Lee, Jae-Ho;Kim, Yong-Kyu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.237-250
    • /
    • 2011
  • The train transportation has a lot of advantages-energy efficiency is high, it is eco-friendly, safety is better than normal roads and it is possible for people to arrive on time. In these days, the valuation of ride comfort, which is only limited to road transportation, is newly recognized in order to having competitiveness from other transportation. Especially, in the development of the Korean high-speed railroad business, the ride comfort enhancement of train is very important problem to be solved. Currently, there are international standards of ride comfort such as UIC13, ISO2631. In Korea case, although it has own standard like KS R9216, it mainly depends on the physical parameter such as vibration and noise. So recently, in the valuation of ride comfort, the movements of living parameter technique introduction are increasing on the base of Japan and many developed countries of Europe techniques. Presently, the method of train ride comfort is mainly based of vibration, that is, mechanical parameter adding selection of variable acceleration and noise. This paper would like to show biological parameter; heart rate and blood pressure variation. This method is more direct, based on human body response, than mechanical parameter method. In this experiment, the variability of heart rate and blood pressure of passengers according to tilting angle change of Train, the Korean tilting train, we are supposed to know that the extent of tilting on the simulation has influence on variability of heart rate and blood pressure, which are living parameter of heart's blood.

Accelerated Life Evaluation of Drive Shaft Using Vehicle Load Spectrum Modeling (차량 부하 스펙트럼 모델링을 이용한 구동축의 가속 수명 평가)

  • Kim, Do Sik;Lee, Geun Ho;Kang, E-Sok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • This paper proposes an accelerated life evaluation of drive shaft for the power train parts of special purpose vehicle. It is necessary the real load data of usage level driving load condition for life evaluation of power train parts, but we can't get the load spectrum data for evaluation in many case of special purpose vehicle. So, in this paper, the road load spectrum data for evaluation is created by modeling and simulation based on vehicle data and special road condition. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved using the Miner's Rule. This paper also proposes the calibrated acceleration life test method for drive shaft. The fatigue test is performed through three stress levels. The lifetime at normal stress level is predicted by extrapolation, and is verified through comparison of experimental results and load spectrum data.

Robust Trajectory Tracking Control of a Mobile Robot Based on Weighted Integral PDC and T-S Fuzzy Disturbance Observer (하중 적분 PDC와 T-S 퍼지 외란 관측기를 이용한 이동 로봇의 강인 궤도 추적 제어)

  • Baek, Du-san;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • In this paper, a robust and more accurate trajectory tracking control method for a mobile robot is proposed using WIPDC(Weighted Integral Parallel Distributed Compensation) and T-S Fuzzy disturbance observer. WIPDC reduces the steady state error by adding weighted integral term to PDC. And, T-S Fuzzy disturbance observer makes it possible to estimate and cancel disturbances for a T-S fuzzy model system. As a result, the trajectory tracking controller based on T-S Fuzzy disturbance observer shows robust tracking performance. When the initial postures of a mobile robot and the reference trajectory are different, the initial control inputs to the mobile robot become too large to apply them practically. In this study, also, the problem is solved by designing an initial approach path using a path planning method which employs $B\acute{e}zier$ curve with acceleration limits. Performances of the proposed method are proved from the simulation results.

Implementation of a Hybrid Controller for Hydraulic Inverter Controller (유압식 인버터 제어기를 위한 하이브리드 제어기 구현)

  • 한권상;최병욱
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 2002
  • Due to the friction characteristics of cylinders and the rail of a passenger car, in the system actuated with hydraulic systems, there exist dead zones, which can not be controlled by a PID controller. In this paper, the friction characteristics of a cylinder is examined, which may cause the abrupt increase of the acceleration in the zero-crossing speed region. To overcome the drawbacks of a PID controlled hydraulic system, a zooming fuzzy logic controller is designed and finally an improved hybrid controller is Proposed. The proposed controller is composed of the PID controller and the zooming fuzzy controller. The effectiveness of the proposed control scheme is shown by simulation and experimental results, In which the proposed hybrid control method yields good control performance not only in the zero-crossing speed region but also In the overall control region including steady-state region.

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

Determination of Optimal Accelerometer Locations for Bridges using Frequency-Domain Hankel Matrix (주파수영역 Hankel matrix를 사용한 교량의 가속도센서 최적위치 결정)

  • Kang, Sungheon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • A new algorithm for determining optimal accelerometer locations is proposed by using a frequency-domain Hankel matrix which is much simpler to construct than a time-domain Hankel matrix. The algorithm was examined through simulation studies by comparing the outcomes with those from other available methods. To compare and analyze the results from different methods, a dynamic analysis was carried out under seismic excitation and acceleration data were obtained at the selected optimal sensor locations. Vibrational amplitudes at the selected sensor locations were determined and those of all the other degrees of freedom were determined by using a spline function. MAC index of each method was calculated and compared to look at which method could determine more effective locations of accelerometers. The proposed frequency-domain Hankel matrix could determine reasonable selection of accelerometer locations compared with the others.

Context-Aware System for Status Monitoring of Industrial Automation Equipment (산업 자동화 장비의 상태감시를 위한 상황인지 시스템)

  • Kim, Kyung-Nam;Jeon, Min-Ho;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.552-555
    • /
    • 2010
  • In this paper, we propose a context-aware system using wireless multi sensor module to monitor the state for industrial factory environment. Wireless multi sensor module combines sensing values which are collected from each acceleration, pressure, temperature and gas sensors. Moreover, it delivers this data to server after being encoded by RS code. Thereafter, RS decoder decodes the values that are received from wireless multi sensor module and fixes errors which occur in wireless communication. Based on decoded data, context-aware algorithm sets critical range and compares it to the sensing values, if the sensing values are out of the range, an event occurs by the algorithm. At the same time, if there is another sensing value which is out of the range for standby time T seconds, the algorithm orders 3 steps-alarm to occur depending on each situation. Through this system, it becomes eventually possible to monitor machines' condition effectively. From the simulation, we confirm that this system is efficient to status monitoring of industrial automation equipment.

  • PDF

Modeling and RPY Motion Analysis of Bipedal Walking Robots (이족 로봇의 보행 모델링 및 롤/피치/요 운동 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.353-358
    • /
    • 2011
  • This paper presents a virtual-legged walking model for bipedal robots and analyzes its fundamental RPY(Roll, Pitch, and Yaw) motion effects by simulation. For the purpose of identifying the motion effects of the bipedal walking, we assign some arbitrary trajectories both at the center of mass and at the center of pressure of the robot based on human walking. And then we verify the major moments to the roll, pitch, and yaw directions of the robot. As a result, it is shown that those motions are natural in the process of bipedal walking and they are deeply dependent on the step distance, the vertical level of the center of mass, and the acceleration of the robot. The importance of trajectory planning for the footstep location during a bipedal walking is finally addressed in terms of balance.

Computational analysis of three dimensional steel frame structures through different stiffening members

  • Alaskar, Abdulaziz;Wakil, Karzan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.187-197
    • /
    • 2020
  • Ground motion records are commonly used for fragility curves (FCs) developing utilized in seismic loss estimating analysis for earthquake prone zones. These records could be 'real', say the recorded acceleration time series or 'simulated' records consistent with the regional seismicity and produced by use of alternative simulation methods. This study has focused on fragility curves developing for masonry buildings through computational 'simulated' ground motion records while evaluating the properness of these fragilities compared to the curves generated by the use of 'real' records. Assessing the dynamic responses of structures, nonlinear computational time history analyses through the equivalent single degree of freedom systems have been implemented on OpenSees platform. Accordingly, computational structural analyses of multi-story 3D frame structures with different stiffening members considering soil interaction have been carried out with finite element software according to (1992) Earthquake East-West component. The obtained results have been compared to each frame regarding soil interaction. Conclusion and recommendations with the discuss of obtaining findings are presented.