• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.029 seconds

A Study on Dynamic Behavior of Guardrail Associated with Design Variables (설계변수에 의한 가아드레일의 동력학적 거동에 관한 연구)

  • Woo, K. S.;Ko, M. G.;Cho, S. H.;Kim, W.
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.89-99
    • /
    • 1994
  • The nonlinear dynamic behaviors of guardrail established on the local or high way have been investigated using BARRIER VII program with respect to four design variables such as section type of beams and posts, impact angle, impact velocity and vehicle weight. Computer simulation programs are sophisticated analytical models for analyzing dynamic vehicle/barrier interactions and provide a relatively inexpensive alternative to full scale crash testing. This study has been focused on the structural adequacy, occupant risk, and vehicle trajectory. For this purpose, the maximum defection and impact force have been calculated to design the clear zone and to analyze effect of impact attenuation. Also, the acceleration of vehicle and exit angle after collision have been computed to estimate the occupant risk. From this study, it is suggested that we should strengthen the design criteria of guardrail to prevent from disastrous traffic accidents.

  • PDF

Structural Damage Assessment Using Transient Dynamic Response (동적과도응답을 사용한 구조물의 손상진단)

  • 신수봉;오성호;곽임종;고현무
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.395-404
    • /
    • 2000
  • A damage detection and assessment algorithm is developed by measuring accelerations at limited locations of a structure under forced vibrations. The developed algorithm applies a time-domain system identification (SI) method that identifies a structure by solving a linearly constrained nonlinear optimization problem for optimal structural parameters. An equation error of the dynamic equilibrium of motion is minimized to estimate optimal parameters. An adaptive parameter grouping scheme is applied to localize damaged members with sparse measured accelerations. Damage is assessed in a statistical manner by applying a time-windowing technique to the measured time history of acceleration. Displacements and velocities at the measured degrees of freedom (DOF) are computed by integrating the measured accelerations. The displacements at the unmeasured DOF are estimated as additional unknowns to the unknown structural parameters, and the corresponding velocities and accelerations we computed by a numerical differentiation. A numerical simulation study with a truss structure is carried out to examine the efficiency of the algorithm. A data perturbation scheme is applied to determine the thresholds lot damage indices and to compute the damage possibility of each member.

  • PDF

Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient (마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석)

  • Moon, Ji-Hoon;Kim, Ji-Su;Lee, Tae-Hyung;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • The friction pendulum system(FPS) is a kind of seismic isolation devices for isolating structures from an earthquake. To analyze the effect of friction materials used in the friction pendulum system, fragility analysis of LNG tank with seismic isolation system was conducted. In this study, titanium dioxide($TiO_2$) nanoparticles were incorporated into polyvinylidene fluoride(PVDF) matrix to produce friction materials attached to the FPS. The base moment of the concrete outer tank and the acceleration of the structure were evaluated from different mixing ratios of constituents for the friction materials. The seismic fragility curves were developed based on two types of limit state. It is confirmed that evaluation of combined fragility curves with several limit states can be applied to select the optimum friction material satisfying the required performance of the FPS for various infrastructure.

Evaluation of Landing Impact Characteristics of Sport Shoes in Running by finite Element Analysis (유한요소 해석을 통한 스포츠화의 런닝 시 착지충격 특성평가)

  • Kim, Sung-Ho;Cho, Jin-Rae;Lee, Shi-Bok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2009
  • Recently, intensive research efforts are world-widely forced on the development of sport shoes improving both the injury protection and the playing performance by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the reliable evaluation of the dynamic responses of sport shoes and human foot, particularly the landing impact characteristics. It is because the landing impact force is a main source of unexpected injuries and influences the playing performance in court sport activities. This paper addresses the application of finite element method to the evaluation of landing impact characteristics of barefoot and several representative court sport shoes in running. In order to accurately reflect the coupling effect between human foot and shoes accurately, we construct a fully coupled three-diemensional foot-shoe FEM model which does not rely on the independent experimental data any more. Through the numerical simulation, we assessed the reliability of the numerical FEM model by comparing with the experimental results and investigated the landing impact characteristics, such as GRF, MIF, acceleration and frequency responses, of representative court sport shoes.

A Study on the Dynamic Characteristics on the Test Line for Korean High Speed Train (한국형 고속전철의 주행진동 특성에 관한 연구)

  • 김영국;김석원;박찬경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.555-560
    • /
    • 2003
  • Korean High Speed Train(KHST) has been tested on the high speed test line in Osung site of Korea High Speed Rail Construction Authority (KHRC). since it was developed as G7 Project Plan In 2002. This paper introduces the dynamic test devices in KHST and shows the comparison between the results of test and theoretical computing results which derive from the new model for KHST dynamic behavior. Previous computer simulation model for KHST was developed to review wether the vehicle system was satisfied with the dynamic performance requirements during the design procedure. But It should be applied the results of the parts test for suspension elements in order to compare between the results of computation and real test. Using VAMPIRE Program made by AEA Technology in UK. the new model also was modified. This paper shows that the static wheel loads calculated from new model is similar to test results. For test on high speed line, we prepared the test devices for evaluating the dynamic performances. which was consisted of the accelerometers( based on Kisler Co.) and the data aquisition systems (based on National instrument Co.), and test program coded by LabView 6i program. These lest devices and programs are flexible to extension the channels for adding sensors and connect to the ethernet network. The acceleration of car bodies, bogie frames and axle boxes were compared between the results of computation and test at 150km/. This paper shows that the results of test were high in high frequency band range but similar frequency band range. It might be considered that these differences were caused by the test which did not performed at constant speed for comparison analysis. Also. It will be able to understand the differences and make better results through a lot of tests planed in future.

  • PDF

Low-Latency Handover Scheme Using Exponential Smoothing Method in WiBro Networks (와이브로 망에서 지수평활법을 이용한 핸드오버 지연 단축 기법)

  • Pyo, Se-Hwan;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • Development of high-speed Internet services and the increased supply of mobile devices have become the key factor for the acceleration of ubiquitous technology. WiBro system, formed with lP backbone network, is a MBWA technology which provides high-speed multimedia service in a possibly broader coverage than Wireless LAN can offer. Wireless telecommunication environment needs not only mobility support in Layer 2 but also mobility management protocol in Layer 3 and has to minimize handover latency to provide seamless mobile services. In this paper, we propose a fast cross-layer handover scheme based on signal strength prediction in WiBro environment. The signal strength is measured at regular intervals and future value of the strength is predicted by Exponential Smoothing Method. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency is reduced. Simulation results demonstrate that the proposed scheme predicts that future signal level accurately and reduces the total handover latency.

  • PDF

A Study on Dynamic Modeling and Path Tracking Algorithms of Wheeled Mobile Robot using Inertial Measurement Units (구륜 이동 로보트의 동적 모델링과 관성측정장치를 이용한 경로추적 알고리즘에 관한 연구)

  • Kim, Ki-Yeoul;Im, Ho;Park, Chong-Kug
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.64-76
    • /
    • 1998
  • In this paper, we propose the dynamic modeling, path planning and tracking algorithms of 4-wheeled 2-d.o.f.(degree of freedom) mobile robot(WMR). The gaussian functions are applied to design the smooth path of WMR. To calculate the WMR position in real time, we use three components of inertial measurement units(IMU). These units have initial error because of the rotation rate of earth, gravity acceleration and so on. Therefore we derive the initial error model of IMU, and compare the fitness diagnosis about probability characteristics of real data adn estimated data. The performance of IMU with error model and Kalman filter is compared to that without filter and error model. The simulation results show that the proposed dynamic model, path planning and tracking algorithms are more useful than the conventional control algorithm.

  • PDF

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (2) Integrated Design Optimization (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (2) 통합최적설계)

  • Lim, Woochul;Lim, Sunghoon;Kim, Shinyu;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • In the design of a combat vehicle, various performances such as firepower, mobility and survivability, etc., should be considered. Furthermore, since these performances relate to each other, design framework which can treat an integrated system should be employed to design the combat vehicle. In this paper, we use empirical interior ballistic and 3D combat vehicle analyses for predicting firepower and mobility performances which are developed in previous study (1) integrated performance modeling. In firepower performance, pitch and roll angle by sequential firing are considered. In mobility performance, vertical acceleration after passing through a bump is regarded. However, since there are many design variables such as mass of vehicle, mass of suspension, spring and damping coefficient of suspension and tire, geometric variables of vehicle, etc., for firepower and mobility performance, we utilize analysis of variance and quality function deployment to reduce the number of design variables. Finally, integrated design optimization is carried out for integrated performance such as firepower and mobility.

Microvibration Control of High Technology Facilities Subjected to Train-induced Excitation using Smart Base Isolation (열차진동하중을 받는 첨단시설물의 스마트 면진시스템을 이용한 미진동제어)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2012
  • Microvibration problem of high-technology facilities, such as semi-conductor plants and TFT-LCD plants, has been considered as important factors that affects the performance of products and thus it is regarded as important in facilities with high precision equipments. In this paper, various base isolation control systems are used to investigate their microvibration control performance. To this end, train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Based on numerical simulation results, it has been verified that smart base isolation system can control microvibration of a high-technology facility subjected to train-induced excitation.

Drop Analysis of a Package and Cushion Performance of Drum Washing Machine (드럼 세탁기 포장재 낙하해석 및 완충 특성)

  • Kim, Chang-Sub;Bae, Bong-Kook;Sung, Do-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1733-1740
    • /
    • 2010
  • The analysis of the dynamic behavior of the packaging of a drum washing machine has been carried out under the drop impact conditions. LS-DYNA software is used for performing the finite element analysis, and the validations are performed by comparing with the impact acceleration, effective stress and deformation of cushioned package with high-speed camera during free drop test. By analyzing the cushion characteristics and the design parameters of the original packaging, a packaging with an improved design is developed, and this design is validated on the basis of the results of the distribution test which consists of drop test, vibration test, stacking test, squeez test and so on. The drop impact simulation and analysis methods developed in this study can be adopted to successfully improve the cushioning provided by the packaging and to reduce the cost involved in developing new packaging for drum washing machines.