• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.029 seconds

Shaking Table Tests of A 1/5-Scale 3-Story Nonductile Reinforced Concrete Frame (1/5 축소 비연성 3층 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우;허윤섭;고동우;강귀용;김상대;정하선;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.581-586
    • /
    • 1997
  • The objective of this study is to investigate the behavior of a 1/5-scale 3-story nonductile reinforced concrete frame subjected to earthquake excitation. For this purpose, Taft N21E earthquake accelerogram was simulated by using 3m${\times}$5m shaking table. When the input acceleration is compared to that of output, it can be found that simulation of shaking table is excellent. From the results of test with Taft N21E earthquake accelerogram adjusted to peak ground acceleration(PGA) 0.06g and 0.12g(maximum acceleration in korea seismic code) the model responded in elastic behavior and it is found that the existing building in our country are safe against the levels of PGA 0.06g and 0.12g.

  • PDF

Integrated Engine-CVT Control Considering Powertrain Response Lag in Acceleration

  • Kim, Tal-Chol;Kim, Hyun-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.764-772
    • /
    • 2000
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the inertia torque and the CVT ratio change response lag in acceleration. In order to compensate for drive torque time delay due to CVT response lag, two algorithms are presented: (1) an optimal engine torque compensation algorithm, and (2) an optimal engine speed compensation algorithm. Simulation results show that the optimal engine speed compensation algorithm gives better engine operation around the optimal operation point compared to the optimal torque compensation while showing nearly the same acceleration response. The performance of the proposed engine-CVT integrated control algorithms are compared with those of conventional CVT control, and It is found that optimal engine operation can be achieved by using integrated control during acceleration, and improved fuel economy can be expected while also satisfying the driver's demands.

  • PDF

T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer

  • Jung, Jin-Woo;Choi, Han-Ho;Kim, Tae-Heoung
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.294-304
    • /
    • 2012
  • This paper proposes a fuzzy speed tracking controller and a fuzzy rotor angular acceleration observer for a surface-mounted permanent magnet synchronous motor (SPMSM) based on the Takagi-Sugeno (T-S) fuzzy model. The proposed observer-based controller is robust to load torque variations since it utilizes rotor angular acceleration information instead of the load torque value. Linear matrix inequality (LMI) sufficient conditions are given to compute the gain matrices of the speed tracking controller and the observer. In addition, it is mathematically verified that the proposed observer-based control system is asymptotically stable. Simulation and experimental results are presented to confirm that the proposed control algorithm assures a better transient behavior and less sensitivity under model parameter variations than the conventional PI control method.

Finite element simulation of traditional and earthquake resistant brick masonry building under shock loading

  • Daniel, A. Joshua;Dubey, R.N.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.19-36
    • /
    • 2015
  • Modelling and analysis of a brick masonry building involves uncertainties like modelling assumptions and properties of local material. Therefore, it is necessary to perform a calibration to evaluate the dynamic properties of the structure. The response of the finite element model is improved by predicting the parameter by performing linear dynamic analysis on experimental data by comparing the acceleration. Further, a nonlinear dynamic analysis was also performed comparing the roof acceleration and damage pattern of the structure obtained analytically with the test findings. The roof accelerations obtained analytically were in good agreement with experimental roof accelerations. The damage patterns observed analytically after every shock were almost similar to that of experimental observations. Damage pattern with amplification in roof acceleration exhibit the potentiality of earthquake resistant measures in brick masonry models.

On the modification of particle dispersion in isotropic turbulence by free rotation of particle (등방성 난류에서 입자의 회전에 의한 분산 특성의 변화)

  • Park, Yong-Nam;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2554-2557
    • /
    • 2008
  • Effect of a particle's spin is investigated numerically by considering the effect of lift occurring due to difference of rotations of a particle and of fluid such as the Saffman lift and Magnus force. These lift forces have been neglected in many previous works on particle-laden turbulence. The trajectory of particles can be changed by the lift forces, resulting in significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are examined of velocity, acceleration of solid particle and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are a little bit changed by particle's rotation. When a laden particle encounters with coherent structures during the motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near coherent structures.

  • PDF

Evaluation of Characteristics and Useful Life of Rubber Spring for Railway Vehicle

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.122-127
    • /
    • 2008
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

  • PDF

Performance Analysis of the GPS Receiver under High Acceleration and Jerk Environments

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.279-283
    • /
    • 2006
  • The GPS receiver developed by KARI for the satellite launch vehicle should operate under severe dynamic environments such as high acceleration and jerk. Several terrestrial tests including the outdoor centrifuge test are planed in order to verify performances of the GPS receiver before flight. This paper deals with preliminary test results of the GPS receiver using a GPS signal generator before the centrifuge test that is a performance test of the GPS receiver using live GPS satellite signals. Test methods of the GPS receiver for the satellite launch vehicle under high centripetal acceleration and jerk utilizing a GPS signal generator are described. The simulation results are also analyzed in this paper.

  • PDF

A Transfer Alignment Method considering a Data Latency Compensation for an Inertial Navigation System in High Dynamic Applications (고기동 환경에서 관성항법장치의 시간지연 보상 전달정렬 기법)

  • Lee, Hyung-Sub;Han, Kyung-Jun;Lee, Sang-Woo;Yu, Myung-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1742-1747
    • /
    • 2015
  • An improved transfer alignment method for a strap-down inertial navigation system (SDINS) is presented here. The alignment accuracy in conventional method is vulnerable to the data latency of a Master INS (MINS) in high maneuverable platforms. We propose a time delay compensation equation considering higher-order terms in the attitude measurement equation of the Kalman filter. The equation incorporates additional information including angular rate, angular acceleration and linear acceleration from the MINS. Simulation results show that the transfer alignment accuracy is significantly improved in the high dynamic environment by incorporating the latency compensation technique.

DC Servo Motor Position Control System Based on Model Following Acceleration Control (모델추종 가속도제어기법을 이용한 직류서보전동기 위치제어계)

  • Park, Young-Jeen;Lee, Kee-Sang;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.261-264
    • /
    • 1995
  • A scheme of observer-based MFAC(Model Following Acceleration Control) system is proposed for the DC servo position control system. The proposed system is competed of MFAC, feedback controller, and reduced-order state observer. As the servo motor is controlled by the acceleration command, the total servo system becomes the acceleration control system. Simulation results show that the proposed system have robust properties against parameter variations and external disturbances.

  • PDF

Acceleration of Simulated Fault Injection Using a Checkpoint Forwarding Technique

  • Na, Jongwhoa;Lee, Dongwoo
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.605-613
    • /
    • 2017
  • Simulated fault injection (SFI) is widely used to assess the effectiveness of fault tolerance mechanisms in safety-critical embedded systems (SCESs) because of its advantages such as controllability and observability. However, the long test time of SFI due to the large number of test cases and the complex simulation models of modern SCESs has been identified as a limiting factor. We present a method that can accelerate an SFI tool using a checkpoint forwarding (CF) technique. To evaluate the performance of CF-based SFI (CF-SFI), we have developed a CF mechanism using Verilog fault-injection tools and two systems under test (SUT): a single-core-based co-simulation model and a triple modular redundant co-simulation model. Both systems use the Verilog simulation model of the OpenRISC 1200 processor and can execute the embedded benchmarks from MiBench. We investigate the effectiveness of the CF mechanism and evaluate the two SUTs by measuring the test time as well as the failure rates. Compared to the SFI with no CF mechanism, the proposed CF-SFI approach reduces the test time of the two SUTs by 29%-45%.