• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.027 seconds

The Design and Implementation of Arc Power supply for Neutral Beam Injection (중성입자빔 가열을 위한 아크 전원 공급장치 설계 및 구현)

  • Lee, Hee-Jun;Shin, Soo-Cheol;Lee, Seung-Gyo;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.50-58
    • /
    • 2013
  • The Neutral Beam Injection(NBI) generates ultra-high temperature energy in the tokamak of nuclear fusion. The NBI consists of filament power supply acceleration and deceleration power supply and arc power supply(APS). The APS has characteristics of low voltage and high current. APS generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The case of proposed buck converter used parallel switch because it can increase capacity and decrease conduction loss. When an arc is generated, the NBI chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus buck converter with constant output is the most important design of the output inductor. In this paper, designed APS verified operation of system and stability through simulation and prototype.

Numerical simulation of the experimental results of a RC frame retrofitted with RC Infill walls

  • Kyriakides, Nicholas;Chrysostomou, Christis Z.;Kotronis, Panagiotis;Georgiou, Elpida;Roussis, Panayiotis
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.735-752
    • /
    • 2015
  • The effectiveness of seismic retrofitting of RC-frame buildings by converting selected bays into new walls through infilling with RC walls was studied experimentally using a full-scale four-storey model tested with the pseudo-dynamic (PsD) method. The frames were designed and detailed for gravity loads only using different connection details between the walls and the bounding frame. In order to simulate the experimental response, two numerical models were formulated differing at the level of modelling. The purpose of this paper is to illustrate the capabilities of these models to simulate the experimental nonlinear behaviour of the tested RC building strengthened with RC infill walls and comment on their effectiveness. The comparison between the capacity, in terms of peak ground acceleration, of the strengthened frame and the one of the bare frame, which was obtained numerically, has shown a five-fold increase.

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

Convergence Study of the Multigrid Navier-Stokes Simulation : II. Implicit Preconditioners (다중 격자 Navier-Stokes 해석을 위한 수렴 특성 연구 : II. 내재적 예조건자)

  • Kim, Yoon-Sik;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.1-8
    • /
    • 2004
  • The objective of this study is convergence acceleration of multigrid Navier-Stokes solvers. This study has been performed to enhance the performance of preconditioned multi-stage time stepping method which is a popular smoother for the multigrid Navier-Stokes solvers. Comparative study on the convergence characteristics of the ADI and DDADI preconditioners has been conducted. It is shown that the DDADI preconditioner has better performance than the ADI by numerical tests on the 2-D compressible turbulent flows past airfoils. The Spalart-Allmaras turbulent model and the Baldwin-Lomax turbulent model have been compared with the multigrid calculations.

Polar rain flux variations in northern hemisphere observed by STSAT_1 with IMF geometry

  • Hong, Jin-Hy;Lee, J.J.;Min, K.W.;Kim, K.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.25.2-25.2
    • /
    • 2008
  • Polar rain is a spatially uniform precipitation of electrons with energies around 100eV that penetrate into the polar cap region where geomagnetic field lines are connected to the Interplanetary Magnetic Fields (IMF). Since their occurrences depend on the IMF sector polarity, they are believed to originate from the field aligned component of the solar wind. However, statistically direct correlation between polar rain and solar wind has not been shown. In this presentation, we examined specifically the IMF strength influence on the polar rain flux variation by classifying of IMF sector polarities. For this study, we employed the polar rain flux data measured by STSAT-1 and compared them with the solar wind parameters obtained from the WIND and ACE satellites. We found the direct mutuality between polar rain flux and IMF strength with correlation coefficient above 0.5. This proportional tendency appears stronger when the northern hemisphere is in the away sector of the IMF, which could be associated with a favorable geometry for magnetic reconnection. Simple particle trajectory simulation clearly shows why polar rain intensity depends on the IMF sector polarity. These results are consistent with the direct entry model of Fairfield et al.(1985), while low correlation coefficient with solar wind density, the similarity between slops of both energy spectra shows that transport process occur without acceleration.

  • PDF

Numerical Simulation of Aerodynamic Characteristics of a Supersonic Projectile (초음속 발사체의 공력 특성에 관한 수치해석)

  • Lim Chae-Min;Lee Jeong-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.86-89
    • /
    • 2005
  • A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation system. The computed results reasonably capture the major flow characteristics which we generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

Suboptimal control strategy in structural control implementation

  • Xu, J.Y.;Li, Q.S.;Li, G.Q.;Wu, J.R.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.107-121
    • /
    • 2005
  • The suboptimal control rule is introduced in structural control implementation as an alternative over the optimal control because the optimal control may require large amount of processing time when applied to complex structural control problems. It is well known that any time delay in structural control implementation will cause un-synchronized application of the control forces, which not only reduce the effectiveness of an active control system, but also cause instability of the control system. The effect of time delay on the displacement and acceleration responses of building structures is studied when the suboptimal control rule is adopted. Two examples are given to show the effectiveness of the suboptimal control rule. It is shown through the examples that the present method is easy in implementation and high in efficiency and it can significantly reduce the time delay in structural control implementation without significant loss of performance.

Shake table test of Y-shaped eccentrically braced frames fabricated with high-strength steel

  • Lian, Ming;Su, Mingzhou
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.501-513
    • /
    • 2017
  • To investigate the seismic performance of Y-shaped eccentrically braced frames fabricated with high-strength steel (Y-HSS-EBFs), a shake table test of a 1:2 scaled three-story Y-HSS-EBF specimen was performed. The input wave for the shake table test was generated by the ground motions of El Centro, Taft, and Lanzhou waves. The dynamic properties, acceleration, displacement, and strain responses were obtained from the test specimen and compared with previous test results. In addition, a finite element model of the test specimen was established using the SAP2000 software. Results from the numerical analysis were compared with the test specimen results. During the shake table test, the specimen exhibited sufficient overall structural stiffness and safety but suffered some localized damage. The lateral stiffness of the structure degenerated during the high seismic intensity earthquake. The maximum elastic and elastoplastic interstory drift of the test specimen for different peak ground accelerations were 1/872 and 1/71, respectively. During the high seismic intensity earthquake, the links of the test specimen entered the plastic stage to dissipate the earthquake energy, while other structural members remained in the elastic stage. The Y-HSS-EBF is a safe, dual system with reliable seismic performance. The numerical analysis results were in useful agreement with the test results. This finding indicated that the finite element model in SAP2000 provided a very accurate prediction of the Y-HSS-EBF structure's behavior during the seismic loadings.

The ROP mechanism study in hard formation drilling using local impact method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Mei, Liu;Meng, Xiannan;Jiang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The low rate of penetration and short lifetime of drilling bit served as the most common problems encountered in hard formation drilling, thus leading to severe restriction of drilling efficiency in oil and gas reservoir. This study developed a new local impact drilling method to enhance hard formation drilling efficiency. The limitation length formulas of radial/lateral cracks under static indentation and dynamic impact are derived based on the experimental research of Marshall D.B considering the mud column pressure and confining pressure. The local impact rock breaking simulation model is conducted to investigate its ROP raising effect. The results demonstrate that the length of radial/lateral cracks will increase as the decrease of mud pressure and confining pressure, and the local impact can result in a damage zone round the impact crater which helps the rock cutting, thus leading to the ROP increase. The numerical results also demonstrate the advantages of local impact method for raising ROP and the vibration reduction of bit in hard formation drilling. This study has shown that the local impact method can help raising the ROP and vibration reduction of bit, and it may be applied in drilling engineering.

Design of Fuzzy-PID Controller for Turbojet Engine of UAV Using LabVIEW (LabVIEW를 이용한 무인항공기용 소형 터보제트 엔진의 Fuzzy-PID 제어기 설계)

  • Shin, Haeng-Cheol;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.190-195
    • /
    • 2016
  • In this paper, Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Fuzzy-PID control algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the Fuzzy-PID controller effectively controls the fuel flow input of the control system. Fuzzy-PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using LabVIEW to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.