• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.024 seconds

Trajectory control for a Robot Manipulator by using neural network (신경회로망을 사용한 로봇 매니퓰레이터의 궤적 제어)

  • 안덕환;양태규;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.7
    • /
    • pp.610-614
    • /
    • 1991
  • This paper proposes a trajectory constrol fo a robot manipulator by using neural network. The inverse dynamic model of manipuator is learned by neural network. The manipulator is controlled by weight values of the learned neural network. The weight valuese is change with a torque of liner vontroller and a acceleration error. Phsically, the totlal torque for a manipualator is a sum of the liner controller torque and the nerural network controller torque. The proposed control effect is estimated by computer simulation.

  • PDF

A Study on the Vehicle Dynamics and Road Slope Estimation (차량동특성 및 도로경사도 추정에 관한 연구)

  • Kim, Moon-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.575-582
    • /
    • 2019
  • Advanced driving assist system can support safety of driver and passengers which may require vehicle dynamics states as well as road geometry. It is essential to have in real-time estimation of related variables and parameters. Among the road geometry parameters, road slope angle which can not be measured is essential parameter in pose estimation, adaptive cruise control and others on sag road. In this paper, Kalman filter based method for the estimation of the vehicle dynamics and road slope angle using a nonlinear vehicle model is proposed. It uses a combination of Kalman filter as Cascade Extended Kalman Filter. CEKF uses measured vehicle states such as yaw rate, longitudinal/lateral acceleration and velocity. Unknown vehicle parameters such as center of gravity and inertia are obtained by 2 D.O.F lateral model and experimentally. Simulation and Experimental tests conducted with commercialized vehicle dynamics model and real-car.

Simulation study on dynamic response of precast frames made of recycled aggregate concrete

  • Pham, ThiLoan;Xiao, Jianzhuang;Ding, Tao
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.643-667
    • /
    • 2015
  • 3-dimentional precast recycled aggregate concrete (RAC) finite element models were developed by means of the platform OpenSees to implement sophisticated nonlinear model subjected to seismic loads. Efforts were devoted to the dynamic responses (including dynamic characteristics, acceleration amplifications, displacements, story drifts) and capacity curve. In addition, this study extended the prediction on dynamic response of precast RAC model by parametric study of material properties that represent the replacement percentage of recycled coarse aggregate (RCA). Principles and assumptions that represent characteristics of precast structure and influence of the interface between head of column and cast-in-place (CIP) joint on the stiffness of the joints was put forward and validated by test results. The comparison between simulated and tested results of the precast RAC frame shows a good correlation with most of the relative errors about 25% in general. Therefore, the adopted assumptions and the platform OpenSees are a viable approach to simulate the dynamic response of precast frames made of RAC.

ORIGINS OF THE FLOW AND MAGNETIC STRUCTURE INVOLVED IN THE FORMATION AND ERUPTION OF A SOLAR PROMINENCE

  • Magara, Tetsuya
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.5
    • /
    • pp.157-170
    • /
    • 2021
  • We investigate flow and magnetic structure of a solar prominence with a focus on how the magnetic field originally determined by subsurface dynamics gives rise to the structure. We perform a magnetohydrodynamic simulation that reproduces the self-consistent evolution of a flow and the magnetic field passing freely through the solar surface. By analyzing Lagrangian displacements of magnetized plasma elements, we demonstrate the flow structure that is naturally incorporated to the magnetic structure of the prominence formed via dynamic interaction between the flow and the magnetic field. Our results explain a diverging flow on a U-loop, a counterclockwise downdraft along a rotating field line, acceleration and deceleration of a downflow along an S-loop, and partial emergence of a W-loop, which may play key roles in determining structural properties of the prominence.

Speed-up of the Matrix Computation on the Ridge Regression

  • Lee, Woochan;Kim, Moonseong;Park, Jaeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3482-3497
    • /
    • 2021
  • Artificial intelligence has emerged as the core of the 4th industrial revolution, and large amounts of data processing, such as big data technology and rapid data analysis, are inevitable. The most fundamental and universal data interpretation technique is an analysis of information through regression, which is also the basis of machine learning. Ridge regression is a technique of regression that decreases sensitivity to unique or outlier information. The time-consuming calculation portion of the matrix computation, however, basically includes the introduction of an inverse matrix. As the size of the matrix expands, the matrix solution method becomes a major challenge. In this paper, a new algorithm is introduced to enhance the speed of ridge regression estimator calculation through series expansion and computation recycle without adopting an inverse matrix in the calculation process or other factorization methods. In addition, the performances of the proposed algorithm and the existing algorithm were compared according to the matrix size. Overall, excellent speed-up of the proposed algorithm with good accuracy was demonstrated.

Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored

  • Nassr, Said G.;Elharoun, Neema M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.131-148
    • /
    • 2019
  • Constant stress partially accelerated life tests are studied according to exponentiated Weibull distribution. Grounded on multiple censoring, the maximum likelihood estimators are determined in connection with unknown distribution parameters and accelerated factor. The confidence intervals of the unknown parameters and acceleration factor are constructed for large sample size. However, it is not possible to obtain the Bayes estimates in plain form, so we apply a Markov chain Monte Carlo method to deal with this issue, which permits us to create a credible interval of the associated parameters. Finally, based on constant stress partially accelerated life tests scheme with exponentiated Weibull distribution under multiple censoring, the illustrative example and the simulation results are used to investigate the maximum likelihood, and Bayesian estimates of the unknown parameters.

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.

Stochastic Model Predictive Control for Stop Maneuver of Autonomous Vehicles under Perception Uncertainty (자율주행 자동차 정지 거동에서의 인지 불확실성을 고려한 확률적 모델 예측 제어)

  • Sangyoon, Kim;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2022
  • This paper presents a stochastic model predictive control (SMPC) for stop maneuver of autonomous vehicles considering perception uncertainty of stopped vehicle. The vehicle longitudinal motion should achieve both driving comfortability and safety. The comfortable stop maneuver can be performed by mimicking acceleration profile of human driving pattern. In order to implement human-like stop motion, we propose a reference safe inter-distance and velocity model for the longitudinal control system. The SMPC is used to track the reference model which contains the position uncertainty of preceding vehicle as a chance constraint. We conduct simulation studies of deceleration scenarios against stopped vehicle in urban environment. The test results show that proposed SMPC can execute comfortable stop maneuver and guarantee safety simultaneously.

Variational nodal methods for neutron transport: 40 years in review

  • Zhang, Tengfei;Li, Zhipeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3181-3204
    • /
    • 2022
  • The variational nodal method for solving the neutron transport equation has evolved over 40 years. Based on a functional form of the Boltzmann neutron transport equation, the method now comprises a complete set of variants that can be employed for different problems. This paper presents an extensive review of the development of the variational nodal method. The emphasis is on summarizing the whole theoretical system rather than validating the methodologies. The paper covers the variational nodal formulation of the Boltzmann neutron transport equation, the Ritz procedure for various application purposes, the derivation of boundary conditions, the extension for adjoint and perturbation calculations, and treatments for anisotropic scattering sources. Acceleration approaches for constructing response matrices and solving the resulting system of algebraic equations are also presented.

A robust collision prediction and detection method based on neural network for autonomous delivery robots

  • Seonghun Seo;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.329-337
    • /
    • 2023
  • For safe last-mile autonomous robot delivery services in complex environments, rapid and accurate collision prediction and detection is vital. This study proposes a suitable neural network model that relies on multiple navigation sensors. A light detection and ranging technique is used to measure the relative distances to potential collision obstacles along the robot's path of motion, and an accelerometer is used to detect impacts. The proposed method tightly couples relative distance and acceleration time-series data in a complementary fashion to minimize errors. A long short-term memory, fully connected layer, and SoftMax function are integrated to train and classify the rapidly changing collision countermeasure state during robot motion. Simulation results show that the proposed method effectively performs collision prediction and detection for various obstacles.